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Final Technical Report 

Contract AFOSR F4962096-1 -0476 
9/30/96-9/30/98 

"WDM Laser Sources for the Defense University (Testbed) Research 
Internet Program (DUTRIP)" 

I. Research 

The objective of this project was to define specifications of a hybrid integrated 

wavelength division multiplexed laser source, to identify the appropriate vendor, and to 

negotiate an acceptable price structure. 

II. Design Specifications 

In consultation with a number of user groups and the DUTRIP program at University of 

Maryland (PI: Prof. Mario Dagenais) we have determined the following set of 

specifications for the four wavelength WDM array: 

1) Emission wavelengths of DFB lasers: 

channel 1: 1549.32 nm 

channel 2: 1552.52 nm (the reference of 193.1 THz.) 

channel 3: 1555.75 nm 

channel 4: 1558.99 nm 

All channel wavelengths to be accurate to ± 0.3 nm* 

2) SMSR > 30 dB under 40 mA peak-to-peak modulation and 8.2 dB extinction 

ratio (SONET OC-48 spec.) 

3) Threshold current      < 30 mA 

4) External efficiency      >0.2 mW/raA 

5) Fundamental transverse mode operation up to IDC =100 mA 

6) Power coupled into      >+6.0dBm 

single mode fiber @100 mA 

7) Modulation bandwidth           2.5 Gb/s ** 



8) Four ECL inputs to drivers: ECL, 50 Q 

9) Four single mode outputs, optical isolator in each laser package. 

10) Back facet monitor in each laser package 

11) Front panel setting of laser bias current and temperature for each laser. 

12) Front panel indicator lights to indicate operation of each laser 

* All wavelengths and spectral properties measured at a chip power output of 5 mW. The 

wavelength may be trimmed with a TC cooler, as long as other specs are maintained 

** modulation bandwidth is limited by the driver chip. 

Additional Considerations 
The vendor will (a) provide available test and reliability data, and (b) establish the device 
code and make it available to other customers at a fixed price 

III. Results 
These specifications were discussed with a number of vendors. Ortel Corporation was 

identified as a low cost supplier capable of satisfying all of the above specifications. Ortel 

Corporation fabricated and delivered 52 arrays of WDM lasers, each operating at four 

wavelengths, as specified above. We have established a testing methodology for these 

WDM arrays and conducted extensive test. The results are summarized in an attached 

paper, presented at the 1999 SPIE Photonics West in San Jose. 

We have investigated wavelength accuracy and stability of WDM transmitters 

delivered to us by Ortel Corporation. Transmitter performance was tested under DC bias 

and modulation at data rates as high as 2.5Gbps. The wavelength accuracy of hybrid 

devices was found to be considerably better than +0.1nm. A considerable fraction of 

devices tested showed small wavelength, less than 0.02 nm, and power, less than 0.1 dB, 

excursions due to digitization noise of control circuitry. Transmission experiments 

through 100 km of standard single mode fiber show low chirp penalties and, in case of 

monolithic arrays, the absence of cross-talk. Long term transmission experiments, up to 

1000 hrs, through wavelength-selective elements simulating WDM systems do not show 



any penalties due to the wavelength or power instabilities. All the devices tested in our 

experiments are suitable for WDM systems research.     This work has allowed us to, 

conclude that the transmitters delivered by Ortel met or exceeded our specifications. 

In order to facilitate testing we have constructed a number of test-beds, some of 

which included passive devices such as multiplexers and demultiplexers. These passive 

devices had to be independently characterized. In the process we realized that the current 

modeling of passive devices could be considerably improved. 

The design of waveguide components and optical circuits, requires detailed 

knowledge of light-guiding parameters, field distributions, transfer -efficiencies, etc., in 

complex device structures and devices coupled into systems. Much of the previous work 

done in this field concentrated on two aspects of this problem. First, several powerful 

methods have been developed to evaluate eigenvalues and eigenfunctions for specific 

waveguide structures. These are the finite-difference or multi-grain method, the finite- 

element or variational method, the effective index methods, the boundary element or 

integral-equation method and the specific matrix implementation of it known as the 

Galerkin method, the WKB method, numerous numerical methods, etc. 

Second, after the eigenvalues and eigenfunctions are calculated, their propagation 

through an optical circuit must be accounted for. The propagation aspects makes the 

calculation of field distributions a complicated and time-consuming task. Much of the 

past effort has been devoted to the computation of field distributions and propagation 

characteristics of waveguide devices in which optical energy couples between the input 

and output ports. The best known examples are the work of Dragone, and Henry and 

coworkers, who used finite Fourier transform propagation method. Very little attention 

has been given in the past to coupling between waveguides and free space optics. 

The previous work usually considered field distributions in optical waveguide 

structures in terms of scalar electrodynamics. However, the pioneering work on radar, 



antennas and microwave waveguides, has demonstrated the general usefulness of 

describing electromagnetic fields in terms of vector electrodynamics. The significance of 

this comes from the fact that the optical waveguide systems are described not only by the 

wave equation for the fields, but also by the boundary conditions which are vectorial in 

nature. Moreover, in optoelectronic devices the distribution of polarization, a vector-like 

quantity, must also be considered. Consequently, a vectorial formulation might be 

expected to have an advantage in computation and design of optical waveguide systems 

and in modeling of the interface between waveguides and free space. 

We have developed a new transfer-amplitude method to describe field 

distributions and efficiencies of optical waveguide systems based on vector 

electrodynamics. The starting point of the analysis is Huygens' picture of propagation of 

time-harmonic electromagnetic fields in complex waveguide structures as expressed by 

Love's formulation ( A. E. H. Love, Phil Trans. Royal Soc. London A, v. 197, pp. 1-45, 

1901) of the vectorial Green's theorem. This approach allows us to divide a complex 

optical waveguide structure into a set of primitive blocks and calculate a transfer 

amplitude and a transfer function for each block separately. We demonstrate that Love's 

expressions for equivalent surface current densities lead to correct results for the field 

distributions in primitive blocks. It is then possible to calculate partial and total transfer 

functions and corresponding device efficiency with high accuracy. 

The representation of a complex waveguide structure by a set of principal surfaces 

separating primitive blocks with known equivalent surface currents and propagation 

functions was shown to be a very useful method. This method provides a possibility of 

constructing the total system response as a convolution of responses of its primitive 

blocks. It is a very close analogue of the method of geometrical optics with its principal 

surfaces and primitive blocks. The distinction is that an exact propagation function, 

including diffraction effects, is used here to describe each primitive block, instead of the 

simple ray approximation. These ideas were already applied to the evaluation of 

Dragone's router, a waveguide problem of considerable complexity. These ideas can be 



also applied to modeling of 3D problems which include both waveguide and free space 

propagation, eg. coupling of lasers, with an arbitrary far field distribution, to fibers 

through lenses and lens systems. The model will include arbitrary source polarization and 

will allow for calculating the sensitivity of coupling efficiency to component 

misalignment. 

Two papers describing these ideas in detail are attached to this report. 
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Abstract 

This paper reviews performance of hybrid and monolithically integrated WDM 
transmitter arrays based on directly modulated 2.5Gbps lasers, with a focus on the 
wavelength accuracy and stability under normal operating conditions. We also consider 
power stability, chromatic dispersion penalties, and the channel cross-talk. Large 
numbers of four-wavelength devices were obtained and evaluated under a program 
designed to provide university-based system researchers with advanced WDM 
components We show that multi-wavelength laser arrays capable of high-performance 
out-of-the-box operation can be now produced for research-type WDM systems. 

Introduction 

Multiple-wavelength laser sources are the fundamental component of WDM systems and 
considerable research and development effort has been devoted to their design and 
fabrication. The research effort, in particular, has focused on monolithically integrated 
multiple-wavelength laser arrays, widely believed to be a superior source, particularly in 
applications involving many wavelengths. However, while practically all of current 
commercial WDM systems rely on discrete lasers with pre-selected wavelengths, 
properties of such hybrid-integrated sources remain poorly documented. This divergence 
of research and industrial practice underscores the difficulty of producing stable, 
monolithic, multiple-wavelength arrays capable of meeting WDM system requirements. 
However, with WDM systems moving towards higher channel density and higher bit 
rates the virtues of the hybrid vs the monolithic approach need to be reassessed. 

In the design of multiple wavelength laser arrays, either hybrid or monolithic, one has to 
consider a range of issues: 

• Gain material: a typical WDM system has a 20 to 30 nm operating range in the 1.55 
micron region which is defined by the Er-doped fiber amplifier (EDFA) gain window. 
Lasers based on quantum well structures that exhibit continuously tunable gain region 
of more than 200 nm might be the structures of choice [1].  More recently, there has 



been also increasing interest in the use of fiber lasers in WDM applications, as their 
gain matches that of the EDFA [2]. 
Wavelength tuning/locking: High quality laser sources can be readily produced using 
a distributed feedback grating (DFB) or a distributed Bragg reflector structure [3]. 
Currently most semiconductor laser arrays utilize DFB structures. With increasing 
number of WDM channels, the channel spacing becomes smaller and the wavelength 
registration accuracy requirements become more stringent. Current dense-WDM 
systems call for channel spacing of 50 GHz, with a GHz wavelength accuracy. In 
order to operate such laser arrays under different environmental and operating 
conditions, careful control of the temperature [4] and power are required. A number of 
laser designs incorporating additional build-in electrodes for wavelength tuning have 
been proposed [5]. In a sampled grating configuration [5a], more than 60 nm tuning 
was demonstrated. Wavelength stabilization through external frequency-selective 
feedback, provided through an external bulk grating, fiber grating, or a WDM 
demultiplexer, is also being investigated [6]. In addition, active frequency locking 
using solid state etalons, or other types of wavelength lockers, is under study for the 
long term wavelength stabilization of single and multiple-frequency laser sources 
[6a]' 
Power combining: The use of simple 3 dB couplers to combine to combine 2   laser 
sources results in the power loss, for each laser, of Nx 3 dB\ With the use of a star 
coupler the loss is still 10 x logN. In a 40 channel WDM system, this amounts to a 
loss of 16 dB! As the channel number increases, it becomes desirable to use 
wavelength multiplexers to combine the outputs of a multiple wavelength source. The 
typical interference filter or fiber grating WDM multiplexer for 8 to 16 channels has a 
fiber to fiber loss of 2-3 dB. As the channel count increases, both the insertion loss 
and the cost of multiplexers increase rapidly. For large channel count applications 
integrated WDM multiplexers, such as arrayed waveguide grating (AWG), become a 
viable choice [7]. The 16-channel AWG typically have a fiber-to-fiber insertion loss 
of 4-6 dB and the loss increases only slightly for larger channel counts. However, 
impressive research results to the contrary, such devices cannot be readily 
incorporated into a monolithic array. 
The optical feedback is another serious issue related to power combining. While 
dealing with discrete lasers, one can use isolators to eliminate the optical feedback. 
However, isolators suitable for integrated laser arrays, in particular high channel- 
count laser arrays, simply do not exist and the optical feedback remains a very 
difficult problem. 
Data modulation: Current WDM systems operate at 2.5 Gbps and the data rate is 

moving toward 10 Gbps. To provide high quality optical signal at 2.5 Gbps and higher 
rates, the data should be encoded through external modulation. For individual lasers, 
and hybrid WDM sources, this can be readily accomplished via external EO 
modulators. To modulate integrated laser arrays, a monolithically integrated on-chip 
modulator is desirable. There has been considerable progress on integrating 
electroabsorption modulators with DFB lasers [9, 9a]. Electronic laser driver arrays 
have also been demonstrated at data rate of 2.5 Gbps and beyond [10,10a]. In hybrid 
integration of electronic driver chips to a laser array, via wire bonding, electrical 
cross-talk can be an issue. 



The early integrated multiple-wavelength arrays were based on DFB and DBR two- 
section lasers allowing for electrical tuning [11-12]. Large laser arrays were made based 
on bulk [13] and strained quantum well [14-16] active layer structures. The strained 
structures produce lower threshold lasers with narrow linewidth and lower thermal 
crosstalk. These devices required either high resolution lithography to produce the proper 
DFB grating pitch or needed repeated holographic exposures [12]. Introduction of the 
phase mask was a major advancement in the lithographic mask definition [19]. E-beam 
lithography was also used to prepare highly accurate gratings with fine pitch shifts. To 
further adjust the wavelength, individual on-chip heaters were introduced [17-18]. 

Early WDM experiments combined the output of laser arrays into a single fiber with 
the use of elaborate bulk multiplexers [20]. Miniature diffraction gratings and hybrid 
micro-optics were introduced to simplify this process [21]. An on-chip power combining 
element for a three-laser array was first reported by Koren et al. [12]. An integrated 
optical amplifier was also provided to compensate for the combiner loss. An NxM star 
coupler was later used to combine the output power of a 20-wavelength laser array [22]. 
In a separate effort, electroabsorption modulators were inserted between the lasers and 
the star coupler to permit high data-rate modulation of individual lasers [23]. In both 
cases, an optical amplifier at the output was used to compensate for the power loss. 

Although WDM multiplexer is a more efficient power combiner for a large channel- 
count laser array, it is quite difficult to match the MUX passband to the laser wavelength 
in a monolithic chip. However, the MUX can be used as a wavelength locker to generate 
multiple wavelength outputs. The MAGIC (multistripe array grating integrated cavity) 
laser [24] was the first demonstration of this concept utilizing a curved mirror grating as 
the wavelength selective element. The MAGIC laser not only produces multiple 
wavelength output, it also combines them into a single output channel [25]. The 
wavelength locking idea was also implemented with the arrayed waveguide grating 
(AWG) WDM multiplexer [26-29]. The multi-wavelength router laser can be also used as 
a tunable laser source. A digitally tunable laser source with build-in electroabsorption 
modulator has also been reported [31-32]. 

Finally we note the wavelength selectable fiber ring lasers using Er-doped fiber 
amplifier as the gain medium and an AWG for wavelength selection [2, 33]. Since the 
laser cavity is long, there are typically 103 to 104 axial modes within the 3 dB passband of 
the AWG. The laser can potentially operate multimode and thus introduce excess 
intermodal optical beat noise. A recent paper reported the use of a semiconductor Fabry- 
Perot optical amplifier as an intracavity narrow band filter to stabilize laser oscillation in 
a single axial mode [34]. 

Experimental Results 

The hybrid integrated laser sources used in this work were provided by the Ortel 
Corp (transmitter model 10348A). The design goal was to produce two four-wavelength 
sources, each on an ITU grid of 3.2 nm (400 GHz), with the shortest reference 
wavelength of 1549.32 nm and 1550.92 nm respectively for each WDM source. Two 
such sources can be easily combined into an eight wavelength source or a source 
operating on a 200 GHz grid with wavelengths varying from 1549.32 to 1560.61 nm. 
Each transmitter module consisted of four independent plug-in units, each containing an 



ECL compatible laser driver, a distributed feedback laser, an optical isolator, and an 
FC/PC fiber optic connector. Individual lasers were independently temperature and 
power controlled. LED indicators were provided to indicate the status of control circuitry. 
At the operating point, the fiber-coupled power output from each lasers was set to be 
greater than 2 mW. Four separate plug-ins were inserted into a rack mountable chassis to 
provide a DC power supply for the necessary bias voltages to each transmitter. Over one 
hundred such transmitters were delivered and tested. 

The monolithically integrated laser arrays were obtained from Nortel Corp. Each 
source consisted of a monolithic four-wavelength laser array fiber-pigtailed to an array of 
4 single-mode fiber. The light from the 4-laser array was simultaneously imaged through 
an optical system composed of 3 successive lenses and a single optical isolator. An ECL 
compatible laser driver was used to drive the laser at 2.5 Gbps. The laser array was 
mounted on a single temperature controller, with a single control circuit for the four laser 
array.. The fiber-pigtailed power in each fiber is more than 1 mW. The wavelength of the 
laser array varied between 1552.52 to 1557.36 nm in steps of 200 GHz. The DC bias 
current for each laser could be controlled individually. 
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Fig. 1A set often spectra obtained from hybrid four-laser WDM sources provided by the 
Ortel Corporation. 

WDM laser transmitter modules were tested for wavelength and power stability. For the 
initial DC testing of hybrid arrays, light output from individual lasers was combined 
using a commercial 1 x 4 combiner, displayed on an optical spectrum analyzer with a 
resolution of 0.8 A, and stored in a computer. A spectrum from each array was obtained 
after a five minutes warm-up time, to allow the power and temperature control circuits to 
stabilize. All the arrays were tested directly after shipment from the manufacturer, 



without any adjustments to control circuits. A set of spectra obtained on ten hybrid 
sources is shown shown in Fig.l, on a logarithmic scale. The side mode suppression 
better than 38 dB was measured for all the channels. The output power of the lasers, as 
preset by the manufacturer, showed variation of a few tenths of a dBm. The spacing 
between the channels was nominally 400 GHz, as specified by the manufacturer, and all 
the hybrid WDM units tested passed the manufacturing wavelength accuracy 
specification of ±0.1 nm. The control wavelength of each laser can be front panel 
adjusted to an accuracy of order 0.01 nm. 

Test results obtained on 12 monolithically integrated arrays are shown in Table 
I. No temperature adjustment was performed on the array. By slightly adjusting the 
temperature of the arrays, a wavelength accuracy of ± 0.15 nm with respect to the ITU 
grid can be obtained. 

Table I 

Serial 
Number 

Wavelength error versus corresponding 
ITU standard wavelength (nm) 

ITU 1552.52 
nm 

ITU 1554.13 
nm 

ITU 1555.75 
nm 

ITU 1557.36 
nm 

980803-1 -0.15 0.03 0.06 -0.01 
980803-2 -0.14 0.00 0.06 0.00 
980803-3 -0.15 0.13 0.02 0.03 
980810-1 -0.05 0.13 0.11 0.04 
980810-2 -0.22 0.07 -0.12 0.03 
980810-3 -0.17 0.13 -0.15 0.03 
980826-1 -0.12 0.08 -0.08 -0.08 
980826-2 -0.12 0.04 -0.12 -0.09 
980826-3 -0.20 0.05 -0.07 0.02 
980902-1 -0.27 -0.10 -0.28 -0.12 
980817-1 -0.16 0.10 -0.13 -0.09 
980817-2 -0.16 0.11 0.06 -0.05 

More detailed temporal wavelength stability measurements, for lasers under 
modulation at a rate of 2.5 Gbps, are shown in Fig. 2. These measurements were carried 
out on a monolithically integrated array using a wavelength meter with an absolute 
wavelength accuracy of ± .005 nm and a display resolution of 0.001 nm. In each panel 
the ITU reference wavelength is indicated by a continuous line, the data is shown as 
dotted lines. Three of the lasers shown here are stable with time, to within 0.015 nm. The 
fourth device exhibits small frequency jumps, on the order of 0.02 nm, representing the 
digitization noise of the temperature control circuit. Similar noise events are observed in 
hybrid-integrated lasers. 

Fig. 3 illustrates the temporal power stability of monolithically integrated 
devices. As expected, there is a good correlation between the wavelength and power 
jumps. In lasers which do not exhibit digitization noise events, the power level is 
maintained constant to within -0.1 dB. However, each noise event results in a power 
jump of about 0.25 dB. Similar jumps occur in hybrid-integrated arrays 
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Figure 2.  Wavelength stability of a Nortel monolithic laser array 
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Figure 3: Temporal power stability of a Nortel monolithic laser array 



Bit-error-rate measurements through 100 km of standard fiber were carried out 
on both types of arrays in order to evaluate the chirp penalty. This is an important 
consideration in closely-spaced WDM systems. Even though DFB lasers are known to 
have a narrow linewidth under CW conditions, these lasers will exhibit frequency 
chirping under modulation. This frequency chirping will lead to a dynamic broadening of 
the laser linewidth and, because of chromatic dispersion in a conventional fiber (i.e. 
Corning single mode SMF-28 fiber), will lead to a penalty in receiver sensitivity, as 
measured in a bit-error-rate (BER) measurement. It is therefore important to characterize 
WDM transmitters in a transmission measurement. BER measurements were performed 
on both 
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Fig. 4 Schematic diagram of a bit-error-rate measurement performed on both hybrid and 
monolithic WDM arrays. 

hybrid and monolithic transmitters using a 100 km of Corning SMF 28 single mode fibers 
and a detector sensitivity assessment was performed by comparing our results at a BER = 
1 x 10"9 with and without the fiber. The experimental arrangement is shown in Fig. 4 and 
the results for a monolithic Nortel transmitter are shown in Fig. 5 a) and b. There, it was 
found that the penalty could be negative, of order 1 dB, for some transmitters, indicating 
an improvement in the detector sensitivity. This improvement is presumably due to the 
sign of the created chirp, which might create some pulse compression, therefore 
improving the signal-to-noise. For Ortel transmitters, a penalty of order 1-2 dB was 
typically observed. 



BER Property of Nortel Transmitter 980817-1-1 (No Fiber vs 100km Fiber) 
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Fig. 5 Transmission experiment evaluating the chirp penalty of a monolithic 
WDM transmitter array 
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The possibility of laser-to-laser interactions, cross-talk, might be of some 
concern in monolithically integrated devices. Fig. 6 shows the results of a transmission 
experiment designed to evaluate the degree of cross talk. The transmission experiment 
measured the bit error rate as a function of received power, through 100 km of fiber. The 
experiment was first carried out with the modulation applied only to one of the lasers, 
laser #1, and then repeated with both lasers #1 and #2 under modulation. The presence of 
cross talk would normally result in a bit-error-rate-penalty, i.e. it would produce a shift 
between the two lines. The experiment illustrated in Fig. 6 shows that such a penalty is 
indeed very small in the monolithic array and is less than 0.1 dB, of no consequence in 
most transmission experiments of interest. This degradation mode is absent in hybrid- 
integrated devices. 

Fiber Spool 
Waveguide 
Router 

BER Measurement 

Fig. 7 Long term, 1000 hrs, transmission experiment through a waveguide router. There 
were no errors attributable to wavelength or power instabilities. 

The final experiment, Fig. 7, illustrates performance of our lasers in a test WDM 
system. In this experiment the laser output from a hybrid array was first combined into a 
single fiber and connected to 100 km spool. The fiber was then attached to a 5 x 5 
waveguide grating router used as a de-multiplexer. The router is capable of wavelength 
discrimination greater than 30 dB and a offers a bandpass of -0.5.nm. Any variation in 
the laser output outside the bandpass of the router would result in catastrophic error rates. 
A receiver was then connected to the center output waveguide and the received power 
was adjusted to produce a bit-error-rate of 1E-9. The laser was modulated at a rate of 2.5 



Gbps. The setup was allowed to run for 1000 hours and a log of BER measurements was 
accumulated under computer control. The highest BER recorded in that period was 6E-9. 

Summary 

We have investigated wavelength accuracy and stability of commercially available 
WDM transmitters. Large numbers of hybrid and monolithically integrated sources were 
tested as-delivered from manufacturers. Transmitter performance was tested under DC 
bias and modulation at data rates as high as 2.5Gbps. The wavelength accuracy of hybrid 
devices was found to be considerably better than ±0.1 nm. A considerable fraction of 
devices tested showed small wavelength, less than 0.02 nm, and power, less than 0.1 dB, 
excursions due to digitization noise of control circuitry. Transmission experiments 
through 100 km of standard single mode fiber show low chirp penalties and, in case of 
monolithic arrays, the absence of cross-talk. Long term transmission experiments, up to 
1000 hrs, through wavelength-selective elements simulating WDM systems do not show 
any penalties due to the wavelength or power instabilities. The commercial devices tested 
in our experiments are suitable for WDM systems research. 
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ABSTRACT 

A method of propagation functions and transfer amplitudes suitable for the design of integrated 
optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the 
distributions and propagation of electromagnetic fields in optical circuits is described by equivalent 
surface sources. This approach permits a division of complex optical waveguide structures into sets of 
primitive blocks and to separately calculate the transfer function and the transfer amplitude for each 
block The transfer amplitude of the entire optical system is represented by a convolution of transfer 

' amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure 
8$**; are obtained in the WKB approximation and compared with other methods. The general approach is 

illustrated with the transfer amplitude calculations for Dragone's star coupler and router. 

Keywords:  integrated optical circuits, waveguides, star couplers, routers, eigenmodes, transfer 

amplitudes, transfer functions 

1    Introduction 

The design of passive waveguide components for wavelength division multiplexing and integrated 
optical circuits requires detailed knowledge of light-guiding parameters, field distributions, transfer 
efficiencies in complex device structures. Much of the previous work done in this field concentrated on 
evaluation of eigenvalues and eigenfunctions for specific waveguide structures. The finite-difference and 
finite-element methods, the effective index methods, the boundary element method, the WKB method, 
numerous numerical methods, etc., have been proposed.1"9 After the eigenvalues and eigenfunctions 
are calculated, their propagation through an optical circuit must be accounted for. Much of the past 
effort has been devoted to the computation of field distributions and propagation characteristics for 
devices in which optical energy couples between the input and output ports. The best known examples 
are the work of Dragone,10-11 and Henry and «workers8-9 which used the finite Fourier transform 
propagation method. Transform techniques, more typical of electrical engineering, are also beginning 

to be applied to this field.12 

The previous work usually considered field distributions in optical waveguide structures in terms 
of scalar electrodynamics. In this work we develop a new transfer-amplitude method, based on Love's 

/ 



formulation13 of vector electrodynamics, to describe field distributions and transfer functions in optical 
waveguide systems. This approach allows us to divide complex optical waveguide structures into sets 
of primitive blocks and calculate transfer amplitudes and transfer functions for each block separately. 
The representation of a complex waveguide structure by a set of principal surfaces separating primitive 
blocks with known equivalent surface currents and propagation functions is shown to be a powerful 
method. It provides a possibility of constructing the total system response as a convolution of responses 
of its primitive blocks. The exact propagation function, including diffraction effects, is used here to 
describe each primitive block, instead of the simple ray approximation. We apply these ideas to the 
evaluation of Dragone's star coupler and router. 

2    Field distributions generated by equivalent surface sources 

Electromagnetic field solutions of Maxwell's equations can be formulated in two different, but equiv- 
alent ways. First, the time-harmonic electromagnetic fields can be expressed as volume integrals over 
real sources which are vectors of real current densities. On the other hand, the solution of the scalar 
Heimholte equation can be represented by a surface integral over an arbitrary surface outside the real 
source region, with an equivalent surface current density. The latter is determined by the field gener- 
ated by the real source. This formulation, called Green's integral theorem, can be generalized to the 
case of vector electrodynamics and the result is known as Love's principle.1 In this Section, we present 

expressions related to Love's principle in a form suitable to applications in optical waveguides. some i 

Let S' (r) = 0 be the equation of some initial, or input, surface with an outer normal vector n'. 
The electric field of the TE component in the source-free region, i.e., outside the surface 5"(r), is 
determined by the Helmholtz equation with the right hand side expressing the boundary condition, 

(V2 + kin2 (r)) E (r) = -iwy^J' (r) 8 (S' (r)) (1) 

where the equivalent surface current density is given by Love's formula, 

Js(r) = 2n'xiJ'(r) (2) 

Here H' (r) is the magnetic field on S' produced by a real source; w, /x0, fco and n (r) are the angular 
frequency, the permeability of vacuum, the wavenumber of light in vacuum, and the refractive index, 
respectively; r is a radius vector. The Dirac delta-function in Eq. (1) allows one to express the electric 
field in terms of Green's function, G{r,r'). As a result, the volume integration reduces to integration 
over the surface where the equivalent surface current density, Eq. (2), is known, 

E (r) = 2iw/z0 f dS'G (r, r') n' x H' (r') (3) 

S' 

A similar expression can be generated for the TM component. The general expression for the field 
generated by an equivalent surface source can be then simplified in cases of planar waveguide geometry 
when a standard set of eigenfunctions V„C0 of the vertical quantization and the bare propagation 

constant ßQ are given. 

Then, the Green's function can be reduced to a two-dimensional form, 

G (r, r') = £ G„ (p, (/) *u (*) VC (*'),    * = 0, 1, 2, ... (4) 



where p and p1 axe the two-dimensional radius vectors in the horizontal plane, and v is the mode 
number. After separating the longitudinal and vertical coordinates, the electric and magnetic fields on 
the input surface are determined by the eigenmodes of the input waveguide: 

E> (r) |s- = e'E0<ps, (I) i>(z),   e'^z'xn' (5) 

iJ'(r)|s, « A^ (I) [ft'Ä& + i'A*<») 
W/JQ l       az 

(6) 

where the function <ps,(l) describes the field distribution on the principal surface 5' (where I is a 
transverse coordinate); the mode numbers are omitted for brevity; z is a unit vector along the vertical 
direction and e' is the direction of the electric field vector; the field amplitude EQ is an arbitrary 
constant. To calculate the fields outside the surface S' according to Eq. (3), one needs the explicit 
form of the equivalent surface current density, J" (r) = -e'^Eo(ps,(l)ip(z). Thus, the general 
surface-integral representation (3) can be reduced to a linear integral over the transverse coordinate on 

the surface S': 

E (r) = -2iß0Eo1> (z) J dl'e'G (pt p') <ps, (0 (7) 

S' 

where V is the arc length along the input boundary in the x-l plane. This equation describes diffraction 
in a slab region between the input and output principal surfaces in a given primitive block. It should 
be emphasized that the unit vector e' appears under the surface integral as the consequence of the 
vectorial aspect of the problem. 

3    Transfer functions 

In this Section, we present the derivation of a general expression for the amplitude transfer function 
(or, in brief, the transfer amplitude) based on Eq. (7). The field E(r) is generated in a slab region 
by an effective surface source on 5'. It propagates from an input surface S' to an output surface 
S according to Huygens' principle and enters the system of output waveguides. Let's suppose the 
total eigenfunction of the output waveguide system contains a product of a new unit vector e and an 
eigenfunction describing vertical quantization i>{z). This representation separates the vector properties 
and the vertical coordinate dependence. The remaining spatial dependence, related to the transverse 
direction, is partly described by an eigenfunction (ps{l). Besides, the electric field at the output surface 
as given by a product of the vertical and transverse eigenfunctions is reduced by one additional factor, 
i.e., the transfer amplitude, describing diffraction in the primitive block. 

A natural way to define a dimensionless transfer amplitude for a primitive block consisting of surfaces 
S and S' and a slab region, is to consider the functional and vectorial projections of the electric field 
E{r), as defined by Eq. (7), onto the product of eigenfunctions of the output waveguides, divided by 

a field amplitude JEQ: 

t (s, s') = Y0f dS v*s {l) r {z) *'E {r) (8) 



= -2iß0  fdlfdl'e- eVs(l)G(p, p')<ps- (0 (9) 
S        S' 

To get the second line in this equation, we used the orthonormality properties of the eigenfunctions ip 
and <p. With the definition (8), the electric and magnetic fields related to the output surface S can be 
represented as follows, 

E (r)\s = eE»t (S, S') <ps (I) V (*) (10) 

H (r)|s = ^-t (S,S') <ps (0 [ni^ + *W (*)] (") 

These expressions for outgoing fields on the surface S are very similar to expressions for the incoming 
fields on the surface S', Eqs. (5) and (6), except for the presence of the amplitude transfer factor. 

The normalization condition which is necessary for the construction of a transfer function requires 
the knowledge of the input Poynting vector on the surface S', f£,ta,. The Poynting vector of the 
outgoing field can be easily obtained on the basis of Eqs. (10) and (11). After integration over the 
surface S, we get 

Ptotai = ä/
5
- \EO\

2
 \t (S, S')f = Plotal \t (S, S')f (12) 

Thus, the quantity \t (S, S')\2, where t is defined by Eq. (8), represents a power (or intensity) transfer 
function for a given primitive block, 

T(S,S') = \t{S,S')\2 (13) 

The total transfer amplitude for the entire optical system is represented by a convolution of multiple 
transfer amplitudes of primitive blocks, with summation over all intermediate principal surfaces (Fig. 

1): 

t(SouUSin)=     Y,     t(Sout,Sn)...t(S2,S1)t{S1,Sin) (14) 

The corresponding transfer function for the entire optical system is defined as: 

T {Souu Sin) = \t {Souu Sin)\2 (15) 

At this point, it is convenient to introduce a normalized transverse eigenfunction of the diirracted 
field, according to Eq. (9): 

<p{l) = -2iß0  f dl'e- e'G{p, p')<Ps>(1') (i6) 
S' 

The concept of a normalized transverse eigenfunction of the diffracted field is very useful because (i) 
the function <p{l) is defined uniquely by Eq. (16) everywhere, (ii) it can be easily generalized to the case 



of several primitive blocks, and (iii) the transfer amplitude, Eq. (9), can be represented as a complex 
overlap integral of two normalized eigenfunctions <p(l) and <ps(l) on the principal surface S, i.e., 

t(S,S')=Jdl<p*s{l)<pV) (17) 
s 

These two eigenfunctions describe the incoming and outgoing fields on the principal surface 5. 

In calculating the properties of integrated optical devices, it is easy to see that the eigenfunctions 
<ps(l) and <p{l) should closely match each other on every principal or output surface S in order to 
maximize efficiency or the transfer function, Eq. (13) or (15), of a particular design. In other words, 
each pair of these two functions (for a given S) has to be chosen commensurable. 

4    WKB approximation for optical waveguides 

The spatial dependence in the transverse direction, described above by an eigenfunction <ps(l), is 
generally not known. This function is a solution of a second order differential equation and it can 
be, in principle, calculated exactly. It can be also modeled for specific waveguide designs by assuming 
a cosine or more complex periodic refractive index or aperture profiles.10 This Section describes a 
method of calculating the transverse eigenfunction tps(l) which is based on WKB approximation (see, 
for example,2'14). It is assumed that the vertical quantization is performed first and that the index 
profile in the transverse direction is a smooth function. We are thus able to use the known vertical 
eigenfunctions and obtain ips(l) from the standard WKB approximation. The electromagnetic field 
dependence on the longitudinal coordinate (x) is determined by an effective propagation constant ß, 

j&fo» to be determined below. 

The WKB approach developed here can be formulated in the following manner. For a waveguide 
system of arbitrary geometry in the x-l plane (the local Cartesian coordinates are x, I, z) and a 
rectangular index step in the z direction, a general eigenmode can be described as 

E(r)=eE0e
ißx<p(l)Tp(z) (18) 

where ß and ß0 (ß0 > ß) are the effective and bare propagation constants, respectively, e is a unit 
vector, and E0 is a constant initial amplitude. We look for a transverse eigenfunction as given by the 
usual WKB expression, <p (I) = Re (eik°"W). This eigenfunction describes the waveguide region between 
the principal surfaces, so that the surface index (S or 5') is inappropriate here. After separation of the 
longitudinal coordinate, the product of ip and <p in Eq. (18) should satisfy 

{w + S + (fc°v {l'z) ~ß2)){tp (0 *{z))=° (19) 

In addition ip must satisfy the condition of vertical quantization: 

(J^+klnHz)-ß£)l>{z)=G (20) 

We assume a general form of the refractive index profile in the transverse direction as given by 



«*M={1f !*!>! (21) 

where ntr(l) represents a single-well (or single-waveguide) or multiple-well structure in the transverse 
direction I. After substituting the general form of a solution into the system of equations (19) and (20), 
the basic WKB equation for the eigenfunction (p(l) is obtained: 

(^+*oP2(0)v(0 = 0 (22) 

where p(l) is the analogue of the classical momentum of a particle in the quantum mechanical WKB 
approximation, 

p(l)=[^£-(nl-nUD)f (23) 

The difference between the formulation of the WKB approximation presented here for optical 
waveguides and the standard formulation, as described for example in,2 is that the condition of vertical 
quantization is included explicitly, Eq. (20). This results in the appearance of a difference between 
propagation constants in p(l). After series expansion in the characteristic parameter fc0 , the WKB 
eigenfunction can be expressed as 

e      «i        J,   h<l<h (24) 

where h and h are the adjacent classical turning points determined by the roots of the function p(/); 
C is a normalization constant. In classically forbidden regions, the momentum becomes imaginary and 
the osculating exponential in (24) reduces to the decaying exponential. As usual, the WKB solution 
(24) is valid only far away from the turning points. If this solution is formally applied to the regions 
near the turning points, artificial singularities appear due to the fact that the classical momentum p(l) 
equals zero at each turning point. These singularities are integrable and do not affect the eigenfunction. 

Lets consider a case in which the function ntr (I) in Eq. (21) describes the index profile of a symmetric 
two-waveguide structure with two classically allowed and three forbidden regions. The turning points, 
lu are the boundaries between these regions. The comparison of solutions in the allowed and forbidden 
regions gives rise to quantization conditions for symmetric and asymmetric eigenfunctions, respectively: 

h 
k0 Jp(l) dl = im + arctan(2e°I)    (symmetric case) (25) 

fc0/p(Z)di = (// + l)7r-arctan(2ea)    (asymmetric case) (26) 
ii 

h 
where /* is zero or a positive integer and the parameter a = fco / |p(J)| dl. Eqs. (25) and (26) represent 

a generalization of the Bohr-Sommerfeld quantization condition to the case of a double-well structure. 
It is instructive to see how this more general solution reduces to the proper Bohr-Sommerfeld condition 
in the case when the separation between two quantum wells tends to infinity.  In this case, a tends 



to infinity (the limit of an infinitely long potential barrier), arctan(2ea) approximately equals f, and 
both equations (25) and (26) reduce to a single equation of the following form 

kojp(l)dl=(^ + \y (27) 

with double degeneracy for each eigenvalue for a given fi. If we neglect this degeneracy, Eq. (27) 
becomes the standard Bohr Sommerfeld condition. Consequently, Eqs. (25), (26)), and (27) provide 
the basis for numerical calculations of the effective propagation constant ß for optical single-well and 
double-well waveguide structures. 

The effective index method is based on successive application of quantization in the vertical and 
transverse directions. This method can be applied to the refractive index profile with abrupt boundaries 
in both of these directions. The method of this paper is more general because it is applicable, with good 
accuracy, to any index profile in the transverse direction including the case of a smooth profile. The 
procedure of vertical quantization within the present approach is exactly the same as in the effective 
index method. The effective propagation constant of a single-waveguide structure is presented in Fig. 2 
as a function of the half-width of the waveguide, a, and compared with that obtained using the effective 
index method. The results of numerical calculations of the effective refractive index for the cases of 
hyperbolic cosine profile and the almost rectangular waveguide profile are also presented in Fig.  2. 
Figure 2 shows very good agreement between the WKB approximation for the hyperbolic cosine index 
profile (curve 1) and the result of the effective index method for a rectangular profile (curve 3). The 
difference between the two calculations is only about 10~3. To extend this comparison further we also 
show the exact numerical calculation (curve 2) for the profile used in the WKB approximation. It is 
easy to see that curves 1 and 2 are very close for a > 1 /xm. In addition, we present results of two 
calculations for an almost rectangular profile done by the WKB method and the numerical calculation 
(curves 4 and 5, respectively), to be compared with the effective index method results (curve 3). The 
effective index method is in good agreement with the numerical calculations (curve 5), as expected, and 
the difference between curves 3 and 5 is almost negligible for o > 2 /an. The WKB approximation for 
the rectangular profile (curve 4) also works well for a > 2 pm, where it differs by about 0.01% from the 
exact numerical calculation. However, for this abrupt index profile the WKB approximation cannot be 
used for a < 2 /zm. The advantage of the WKB method is the possibility of calculating eigenfunctions 
corresponding not only to single waveguides with the effective propagation constant ß (which can be 
obtained from Fig. 2 with ß = fco"e//), but of extending such calculations to more general transverse 
waveguide structures. This is in contrast with the effective index method. 

In Figure 3 we illustrate a procedure for eliminating singularities at the classical turning points of 
a single-waveguide structure and compare the WKB-eigenfunctions with the eigenfunctions calculated 
numerically. Figure 4 shows the modified WKB eigenfunction (curve 1) and the corresponding exax;t 
eigenfunction (curve 2) for the case of a double-well waveguide structure, where 2d is the distance 
between individual waveguide centers (d = 3 /am). 

5    Applications to star couplers and routers 

In this Section we consider propagation of eigenmodes and transverse eigenfunctions using the 
transfer amplitude defined in Eq. (17). It is well-known that diffraction of guided waves in a star 
coupler with circular (cylindrical) principal surfaces and the ratio d/R < 1 (where d is the distance 
between waveguides in a periodic structure in the transverse direction, and R is the characteristic 
radius of principal surfaces bounding the slab region) can be described with high accuracy within the 



Fourier-optics approximation.10-15 The calculations of the transverse eigenfunction <p{l) of the diffracted 
field and the transfer amplitude t(S, S') for Dragone's star coupler and router, i.e., two star couplers 
connected through a multi-waveguide grating structure, are considered below in this approximation. 

In the case of a star coupler, the basic Eqs. (16) and (17) can be reformulated as: 

t(S,S') = /"<to^(«)^<*) <28) 

s 

fltt)=s (Z1M\1/2 e'ßo* J da'e-Wo'ts'i*') (29) 

^ 5' 

where the integral in Eq. (29) is a typical Fourier-optics integral. Here we use angular variables a 
and ol (a ol <C 1, e • e' « 1) instead of a pair of two-dimensional radius-vectors p and p , and the 
eigenfunctions are normalized by the angle a instead of the arc length. If the input into the slab region 
is introduced by a single waveguide with the ordinal number m on S', the transverse eigenfunction 
(29) of the diffracted field on S can be represented in general by a Bloch function of the order m: 
<b (a) = e-

imßoda <j>0{a). The angular period of these Bloch oscillations equals 2n/(\m\ß0d) and is 
much smaller, for |m| > 1, than the characteristic spread of the diffracted field described by the function 
</>0(a) (this spread is of the order 4ir/(ß0d)). On the other hand, this period is much greater than the 
natural angular period of the waveguiding system, djR. 

When the eigenfunctions <j>0(a) and 4>8(a) are known, the integral in Eq. (28) can be easily eval- 
uated. The calculated transfer functions T = \tf are presented in Fig. 5 for different values of N 
Transfer functions are sensitive to the size, the total number, and the periodicity of the input and 
output waveguides. This allows for easy optimization of the device. The calculated values for the star 
coupler's efficiency are realistic and relatively high, reaching a maximum of ~ 80%. That is much 
higher than the values estimated previously.10 

In the case of Dragone's router, from the purely geometrical consideration, one can establish that 
the transmission through a multi-waveguide system, from Sx to Si can be described by a special type 
of the transfer amplitude, called here W^ca), which is related to the grating geometry and the 
detailed shape of the waveguide openings at the two surfaces. When both star couplers are of the same 
shape and size, the transfer amplitude W is proportional to the delta function of its arguments and we 
get the following symmetric form: 

W(a[, ai) = w(ai) 6{a[ - <*i) (30) 

where the single-parameter phase factor to(ai) describes phase shifts between adjacent waveguides 
arising from their relative displacements and different optical paths between Si and SJ. Using Eq. (30) 
the general formulas describing double diffraction in two star couplers can be represented as: 

* (Sovt, Sin) = Jda <&<- (<*) ^(a) (31) 

"out 

4>{a)=j da'K(a,a')<j>Sin(a') (32) 



K{a,a') = (-2iß0R)2 f dax G(a,ati) w(o=i) G(aua') 

Si 

(33) 

The remaining double integral in Eqs. (32) and (33) is quite simple in the Fourier-optics approximation. 
The grating produces a periodic signal on the output surface Sout- In this case, the characteristic 
function w can be represented by a sum of discrete contributions from each waveguide in the grating: 

w(ai) = £ eisßA «(en - sad) (34) 
» 

where A is the length difference between adjacent waveguides, the product of /JA is the optical path 
difference between waveguides, and s = 0,±1,±2,.... Integrating over the angular variables and using 
the well-known formula related to Floquet's theorem we get: 

The grating thus generates a periodic delta function in the transfer amplitude. 

Eqs. (32) and (35) have important applications to wavelength multiplexing and demultiplexing in 
integrated optical circuits. Suppose the input to the router consists of four closely spaced and equidis- 
tant wavelengths in a single-waveguide, with four corresponding values of the propagation constant 
ß. This set of wavelengths can be represented by A„ = A0(l + ne) where n = 0,1,2,3, and Ao and 
ß0 are the initial values for the (de)multiplexing problem. To resolve any two adjacent wavelengths, 
the condition p0 = &&%■ on the last term in the argument of the delta function in Eq. (35) must be 
satisfied, where p0 is the order of the diffraction maximum. Then the a' in the delta function in Eq. 

4iti$$r (35) takes the following values: 

o/ = -a-nad + (|4--) (36) 
PQ a       e 

where n = 0,1,2,3. The light of any wavelength can be thus send to any output waveguide, depending 
only on the input waveguide used and the parameter A. The phase shift s* in the argument of (36) 
can be partly or entirely compensated for by choosing the value of the characteristic path difference 
A. For example, complete compensation is achieved for A = fy^d. In this situation, the light of 
wavelength A0 entering the central input waveguide is directed to the central output waveguide. The 
same light entering the waveguide m is directed to the output waveguide -m. Light of the wavelength 
Ai is displaced by one angular period of the grating, etc. 

The different wavelength contributions are totally separated (demultiplexed) in space (angular) 

variable and 

3 

n=0 

where c„ is the amplitude coefficient of a contribution with An in the input signal. We conclude that 
the input signal is totally demultiplexed on the output surface of Dragone's router, i.e. each wavelength 
enters its own output waveguide. When the phase shift in Eq. (36) is not completely compensated for, 
an additional phase shift should be entered into Eq. (37). This might be useful when it is desirable 
to send any wavelength to any particular output waveguide. The typical values A0 = 1.5500 /xm and 
AA = 0.0032 /xm correspond to the diffraction maximum of the order p0 = 106 in Eq. (37). 



An example of wavelength demultiplexing is shown in Fig. 6 which plots the diffracted intensities 
for two wavelengths as a function of the output angle. The resolving capability of the device depends 
on the total number of waveguides in the grating section. Figure 6 shows the response of the router 
with 19 waveguides in the grating. 

6    Summary 

In conclusion, the method of modeling complex optical systems developed in this work provides a 
qualitative explanation for the propagation of eigenmodes in integrated optics devices and also a very 
powerful and flexible method for numerical calculations of diffracted field distributions, efficiencies, etc., 
needed for complete characterization of such devices. The proposed design technique consists of the 
following steps: (a) dividing a complex optical waveguide system into a set of primitive blocks separated 
by principal optical surfaces, and the determination of boundary values of electromagnetic fields and 
their polarization, (b) expressing the diffracted fields through surface integrals, generated according to 
Love's field equivalence principle, by the equivalent surface current densities, (c) computing the transfer 
amplitude and transfer function for each block separately, (d) calculating the transfer amplitude of the 
entire optical system as a convolution integral of the transfer amplitudes of its primitive blocks, (e) 
evaluating the efficiency of an optical device, i.e., its total transfer function, as a function of the size 
and shape of apertures on principal surfaces or the number of waveguides in the grating. 

Acknowledgments: This work was made possible through generous support from DARPA, BMDO, 
and the J. F. Maddox Foundation. 
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Figure Captions 

Figure 1: Schematic representation of an integrated optical structure with its input, output and 
intermediate principal surfaces separating the primitive blocks, representative, for instance, of a Drag- 
one's router. The JVV, stands for a number of waveguides between the ith and jth principal surfaces. 

Figure 2: The effective refractive index (ne// = ß/ko) of a single-well waveguide plotted as a 
function of its half-width a, as calculated using the WKB approximation, the effective index method, 
and the exact numerical calculations: 1 - the case of hyperbolic cosine profile calculated by the WKB 
approximation (solid line) and 2 - the numerical calculation (A); 3 - the case of a rectangular profile 
with abrupt boundaries calculated by the effective index method (dashed fine); 4 - the case of an almost 
rectangular profile calculated by the WKB approximation (D) and 5 - the numerical calculations (■). 
The horizontal asymptotic line represents the value of the effective index in the slab region (/30/fc0). 
All the calculations use parameters characteristic of semiconductor waveguides. 

Figure 3: The TE eigenmodes of a single waveguide with the hyperbolic cosine profile calculated 
by (1) direct application of the WKB approximation, (2) after elimination of singularities at classical 
turning points, and (3) by numerical calculations . 

Figure 4: The TE eigenmodes for coupled waveguides, (1) after elimination of singularities at the 
four classical turning points , and (2) by numerical calculations . 

Figure 5: The efficiency, T (5, S'), of Dragone's star coupler plotted as a function of the number N 
of output waveguides in the case of a single-waveguide input: 1 and 2 - the case of a merging waveguide 
system on S with a = d/2 and a = d/4, respectively; 3 - the case of a periodic cos2(^) aperture 

profile on S. 

Figure 6: The resolving capability of two Dragone's couplers with 19 waveguides in the grating, in 
the case of a single-waveguide input: the diffracted intensities for two wavelengths as a function of the 
output angle according to Eqs. (35) and (37). 
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Propagation of Eigenmodes and Transfer 
Amplitudes in Optical Waveguide Structures 

V. A. Mashkov and H. Temkin, Fellow, IEEE 

Abstract—A method of transfer amplitudes suitable for mod- 
eling and simulation in integrated optical circuits is presented. 
The method is based on vectorial formulation of electrodynamics: 
distributions and propagation of electromagnetic fields in optical 
circuits are described by equivalent surface sources. This ap- 
proach permits a division of complex optical waveguide structures 
into sets of primitive blocks and to separately calculate the 
transfer amplitude for each block. The transfer amplitude of the 
entire optical system is represented by a convolution of transfer 
amplitudes of its primitive blocks. Diffraction in slab regions 
is taken into account using known propagation functions. It is 
shown that the concept of a normalized transverse eigcnfunction 
of the diffracted field is very useful in calculations of transfer 
amplitudes. The crucial role of transverse Bloch modes in prop- 
agation through multiwaveguide structures is emphasized. With 
this method, the eigenvalues and cigenfunctions of an arbitrary 
waveguide structure can be obtained with high accuracy. The 
general approach is illustrated with the transfer amplitude and 
efficiency calculations for a star coupler and a waveguide grating 
router. 

Index Terms—Eigenmodes, integrated optical circuits, star cou- 
plers, transfer amplitudes, waveguide grating routers, waveg- 
uides, wavelength division multiplexing and demultiplexing. 

I. INTRODUCTION 

THE DESIGN OF passive waveguide components for 
wavelength division multiplexing and integrated optical 

circuits requires detailed knowledge of light-guiding parame- 
ters, field distributions, transfer efficiencies, etc., in complex 
device structures. Much of the previous work done in this 
field concentrated on two aspects of this problem. First, 
several powerful methods have been developed to evaluate 
eigenvalues and eigenfunctions for specific waveguide struc- 
tures. These are the finite-difference or multigrain method, 
the finite-element or variational method, the effective index 
methods, the boundary element or integral-equation method, 
and a specific matrix implementation of it known as the 
Galerkin method, the WKB method, numerous numerical 
methods, etc. (see [1|-|13) and references therein). Second, 
after calculating the eigenvalues and eigenfunctions, their 
propagation through an optical circuit must be accounted 
for. The propagation aspect makes the calculation of field 
distributions a complicated and time-consuming task. Much 
of the past effort has been devoted to the computation of field 
distributions and propagation characteristics for optoelectronic 
devices in which optical energy couples between the input 
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and output ports. The best known examples are the work of 
Dragone [14], 115] and Henry et al. [11], [12], which used 
Fourier transform propagation methods. In multiwaveguide 
structures with gradual transitions, such as waveguide merging 
or tapering, propagation characteristics of optical fields can 
be described using Bloch modes [16]. Transform techniques, 
more typical of microwave engineering, are also beginning to 
be applied to this field [17]. 

The previous work usually considered field distributions 
in optical waveguide structures-in terms of scalar electrody- 
namics. However, the pioneering work on radar, antennas, 
and microwave waveguides has demonstrated the general 
usefulness of describing electromagnetic fields in terms of 
vector electrodynamics [2|. The significance of this comes 
from the fact that optical waveguide systems are described 
not only by the wave equation for the fields, but also by the 
boundary conditions which are vectorial in nature. 

In this paper, we develop a transfer-amplitude method to 
describe field distributions and transfer functions in optical 
waveguide systems based on vector electrodynamics. The 
starting point of the analysis is Huygens' picture of prop- 
agation of time-harmonic electromagnetic fields in complex 
waveguide structures as expressed by Love's formulation 118| 
of the vectorial Green's theorem. This approach allows us to 
divide a complex optical waveguide structure into a set of 
primitive blocks and to calculate the transfer amplitude for 
each biock separately. We demonstrate that Love's expressions 
for equivalent surface current densities lead to correct results 
for the field distributions in primitive blocks. It is then 
possible to calculate partial and total transfer amplitudes and 
corresponding device efficiencies with high accuracy. 

Section II describes field distributions generated by equiva- 
lent surface sources based on Love's principle. We show how 
to extract the dependence of the electromagnetic field on the 
vertical coordinate, the confinement direction, and to obtain 
two-dimensional (2-D) field distributions. 

General expressions for transfer amplitudes of primitive 
blocks and of the entire optical system are presented in 
Section III. A waveguide structure is represented by a set 
of principal surfaces separating primitive blocks, each with 
known equivalent surface currents and propagation functions. 
The total system response is then constructed as a convolution 
of responses of its primitive blocks. 

The effects of lateral confinement and transverse eigenfunc- 
tions for single and multiple waveguides are considered in 
Section IV, where simulations of single, double, and periodic 
waveguide structures are presented. 

0018-9197/98$ 10.00 © 1998 IEEE 
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Sections V and VI present the examples of applications in 
which multiple diffraction effects are important. The general 
ideas are applied to the analysis and efficiency evaluation of a 
star coupler and Dragone's router (two star couplers connected 
by a waveguide grating) with emphasis on the Bloch-mode 
nature of diffracted fields. 

II. FIELD DISTRIBUTIONS GENERATED 

BY EQUIVALENT SURFACE SOURCES 

Electromagnetic field solutions of Maxwell's equations can 
be formulated in two different but equivalent ways. First, 
time-harmonic electromagnetic fields can be expressed as 
volume integrals over real sources which are vectors of real 
conservative current densities. Second, the solution can be 
represented by a surface integral over an arbitrary surface 
outside the real source region, with an equivalent surface 
current density [19]. The latter is determined by the fields 
generated by the real source. This formulation is known as 
Love's principle of vector electrodynamics [2], [19], and it 
can be reduced to Green's integral theorem in case of scalar 
electrodynamics. 

Love's field-equivalence principle uses surface currents to 
describe optical fields in the source-free region [21. The optical 
fields generated by any real source and the optical fields 
generated by the corresponding equivalent surface sources 
are totally equivalent. Due to the boundary conditions, the 
presence of the surface itself decouples the total optical field 
into vector components, subject to Fresnel's electric and 
magnetic refraction at the surface [19]. This decomposition 
is unique and it is not subject to any approximations. In 
case of a curved or uneven surface, this decomposition is 
done at each point on the surface, i.e., it is local. The two 
resulting polarization components are thus described, outside 
the surface, by two independent surface currents defined at 
each point on the surface. Love's principle provides rules for 
the evaluation of equivalent surface sources when the optical 
fields on a given principal surface are known [2], 118]. 

We formulate Love's principle by analogy with the treat- 
ment of bulk current densities in Maxwell's equations. Let 
5'(r) = 0 be the equation of some initial, or input, surface 
with an outer unit normal vector n' (Fig. 1). Due to the surface 
decomposition described above, there are two surface currents 
and two distinct modes. One of the modes is very similar to a 
TE mode in a slab waveguide, while the other one is similar to 
a TM mode. We use this similarity to simplify the terminology 
throughout the paper: we refer to TE-like modes simply as TE 
modes, and TM-like modes as TM modes. The electric field 
of the first mode in the source-free region, i.e., outside the 
surface S'(r), is determined by the imhomogeneous vector 
Helmholtz equation with the right-hand side expressing the 
boundary condition on 5" 

(V2 + fc2n2(r))E(r) = -iu,i03°(T)6{S'{r))        (1) 

where u, /x0, fco - 2TT/A, and n are the angular frequency, the 
permeability of vacuum, the wavenumber of light in vacuum, 
and the refractive index, respectively. The equivalent surface 

Fig 1 A schematic representation of the equivalent diffraction problem as 
described by Love's principle, (2) and (3). The surface element with the 
unit normal n' generates the optical field at an observation point P in the 
source-free region, i.e., outside the volume V. Fields generated by a real 
source J and by the entire surface S' are identical. The point labeled O is 
the coordinate system origin. 

current density is given by Love's expression 

Js(r) = 2n' x H'(r)|s< (2) 

where H'(r) is the magnetic field on S' produced by a real 
source. The Dirac-delta function in (1) is used to express the 
electric field in terms of Green's function G. The volume 
integration reduces to integration over the surface, where 
the equivalent surface current density, (2), is known. Con- 
sequently, we have the following 2-D integral representation 
for the TE-mode fields outside the surface S' 

E(r) = 2mio [ dS'G(r, r')rY x H'(i') 
Js" 

(3) 

and H(r) = (l/io>/z0)V x E(r). This equivalent diffraction 
problem, as opposite to the initial problem with the bulk 
source, is depicted in Fig. 1. 

The fields of a TM mode can be described in a very similar 
manner by using the appropriate equivalent surface current, 
determined by Love's principle. In considering a TM mode, 
we use a bar, for example, n -> n(r), to describe possible 
birefringence; c(r) = 50n2(r), E, H, J" (for TE modes) 
—> E, H, Js (for TM modes). The equivalent TM surface 
current becomes 

Js(r) = -2rY x E'(r)|.s< (4) 

and the TM-mode fields in the source-free region 

H(r) = -2iwe0 f dS'G(r, r')n2(r')n' x E'(r')      (5) 
.   JS' 

and E(r) = (i/we0n
2(r))V x H(r), and Green's function 

G(r, r') is calculated with n(r). 
The general expressions presented above for the fields gen- 

erated by equivalent surface sources can be simplified in case 
of planar waveguide geometry by using any approximation 
allowing for the separation of variables. This is done below in 
two steps: first, by separating basic eigenfunctions describing 
confinement of the optical field in a planar waveguide, and 
then by calculating the residual transverse eigenfunctions that 
match the actual index profile in the plane (see further discus- 
sion in Section IV). The eigenfunctions describing confinement 
in a planar waveguide (z  is the vertical coordinate) are 
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determined by well-known second-order differential equations 
with the boundary conditions for the waveguide-substrate and 
the waveguide-cladding interfaces (see [1], [4]), with ß0 as 
the propagation constant in the longitudinal direction (x) of 
a slab region. The solution gives eigenfunctions ^v(z) and 
eigenvalues of the propagation constant ßo„ with the mode 
number v equal to zero or a positive integer. Green's function 
in (3) can be then reduced to a 2-D form 

G(r, r') = Y, G»fa /*>,(*)#(*').    * = 0, 1, 2, ■ • ■ 

(v?+ /&)<?.,(* P') = -*2(P-/0 

(6) 

(7) 

where V^ is a 2-D gradient operator and p and p' are the 2-D 
radius vectors in the plane. 

After separating the longitudinal and vertical coordinates, 
the electric and magnetic fields at the input surface are 
determined by the TE eigenmodes of the input waveguide 

E'(T)\s,=e'E0cps.(l)v(.: z x n (8) 

H'(r)|.v = ^ <M0 U'i yP- + zM'iz))      (9) 

where the function ips> (/) describes the field distribution on the 
principal surface S', I is a transverse coordinate (see Section 
IV), the index v and a possible transverse mode quantization 
index are omitted for brevity, z is a unit vector along the 
vertical direction and e' is the direction of the input electric 
field vector, and the field amplitude E0 is an arbitrary constant. 
To calculate the fields outside the surface S' according to (3), 
one needs the explicit form of the equivalent surface current 
density 

J*(r) = 2rV x H'(r)|.s- = -e' ^i I^s-VYHz)- 
■^V'o 

(10) 

The general surface-integral representation (3) for the TE 
modes can be thus reduced to a linear integral over the 
transverse coordinate on the surface S" 

E(r) = -2iß0E„i>{z) f M'e'G{p,p')ips'{l')        0 0 
■IS' 

where /' is the arc length along the input boundary in the 
x-l plane. This equation describes diffraction between the 
input and output principal surfaces in a given primitive block 
(Fig. 2). The unit vector e' appears under the surface integral 
as the consequence of the vectorial aspect of the problem. 
Equation (11) is used in the next section to calculate the 
block transfer amplitude. Representation of the field by a 
linear integral is convenient for planar waveguide problems. 
The accuracy of this representation is limited by the degree 
of vertical confinement. It is also assumed that multiple 
reflections of the diffracted optical field from the output and 
input principal surfaces can be neglected. This is the case with 
star couplers and routers (see Sections V and VI). 

There is a point to be emphasized regarding approximations 
being used in this approach. The use of Fresnel's electric 
and magnetic vector decomposition at the surface and Love's 

(a) 

,y/////A mm. 
■'input 'output 

Fig. 2. Schematic representation of (a) an individual primitive block showing 
the general geometry of a star coupler and (b) an integrated optical structure 
with its input, output, and intermediate principal surfaces separating primitive 
blocks, representative, for instance, of a Dragone's router. .Y;j stands for a 
number of waveguides between the ;'th and ./'th principal surfaces. 

principle for the equivalent surface sources are not subject 
to any approximations. On the other hand, while the sepa- 
ration of variables is an approximation, it does not lead to 
loss of accuracy or abandonment of the vectorial formalism. 
This is just a simplification allowing for a one-dimensional 
(1-D) integral representation of the fields, computationally 
convenient for planar waveguides with good confinement. The 
vectorial representation, in a sense of being able to calculate 
field intensities for any polarization angle, is maintained. 

The normalization condition, which is necessary for con- 
struction of a transfer amplitude, requires knowledge of the 
input Poynting vector on the surface S". According to (8) and 
(9), it can be represented as 

P' = -Ro(E'xH'*) 

2tJfLQ 
\Eo\2\<Ps>(l)\2 

■Rc(n7k|#0l2+™V'(z) 

or, after integration over the surface 5', 

p' - n'     ^"     IF  I2 

dij>*{z) 
dz 

(12) 

03) 

Here the asterisk stands for complex conjugation. The polar- 
ization vectors e and e' are assumed to be real and describe 
linear polarizations. 

In the case of TM modes, the boundary conditions are 
different and there is possible birefringence, so that the system 
of equations for the TM eigenfunctions of vertical quantization 
needs to be modified [3]. There is then a complete one-to- 
one correspondence between the TE and TM modes. Only 
an exchange of electric and magnetic fields and the use of 
quantities with a bar are required. Therefore, for a TM mode, 
(8)-(10) are replaced with 

H'(r)|s< =S'ffo?s'(lM*) 04) 
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E'(r)|< 
Ha 
 =o7 <fS'(l) we0n

z(r) 

dj,{z)       „-g -r 

dz 

J-(r)=-2n'xE'(r)|s 

2ß0 

+ ZßolKz)j (15) 

: —e 
we0n

2(r) 
H0Tps,m{z) (16) 

These expressions for outgoing fields on the surface S are 
very similar to expressions for the incoming fields on the 
surface S' [see (8) and (9)], except for the presence of the 
amplitude transfer factor. Multiple reflections of the diffracted 
optical field from the output and input principal surfaces are 
neglected in (18) and (19). 

The Poynting vector of the outgoing field can be easily 
obtained on the basis of (20) and (21) 

where JiQ is the TM mode propagation constant, and the gen- 
eral surface-integral representation (5) for the TM modes can 
be reduced to a linear integral over the transverse coordinate 
on the surface S" 

H(r) = 2iTi0H0J>(z) f dl' e'G(p, p')^>'(0-        0?) 
Js' 

The magnetic field_amplitude ~H0 is an arbitrary constant, and 
Green's function G{p, p') is defined with equations similar to 
(6) and (7) for the case of TM modes. 

There is an obvious symmetry (up to the general sign) 
between the propagation properties of the TE and TM modes 
as described by (II) and (17) for diffracted fields. In the 
remainder, unless otherwise indicated, we will discuss only 
the TE modes. 

III. TRANSFER AMPLITUDES 

In this section, we derive a general expression for the 
transfer amplitude based on (11). The field E(r) is generated in 
a slab region by an effective surface source on S'. It propagates 
from an input surface S' to an output surface 5 according to 
Huygens' principle and enters the system of output waveguides 
[see Fig. 2(a)]. Let us suppose the total eigenfunction of the 
output waveguide system contains a product of a new unit 
vector e and an eigenfunction describing vertical quantization 
ij){z). This representation separates the vector properties and 
the vertical coordinate dependence. The remaining spatial 
dependence, related to the transverse direction, is described 
by an eigenfunction tps{l) (Section IV). The electric field 
at the output surface is given by a product of the vertical 
and transverse eigenfunctions with the transfer amplitude that 
describes propagation and diffraction in the primitive block. 

A natural way to define a dimensionless transfer amplitude 
for a primitive block bound by surfaces S and S" is to consider 
the functional and vectorial projections of the electric field 
E(r), as defined by (11), onto the product of eigenfunctions 
of the output waveguides, divided by a field amplitude EQ 

t(S, S')=Y0J dS<p*s(lW(z)e • E(r) (18) 

= -2ißo ! dl I dZ'e-eVs(OG(p,P>s<(0-(19) 
Js     JS' 

Orthonormality properties of the eigenfunctions tp and >p were 
used to get the second line in this equation. With (18), the 
electric and magnetic fields related to the output surface S 
can be represented as follows: 

E(r)|s =et{S.. S')Eo<Ps(l)1>{*) (20) 

P = -Rc(ExH*) 

e   e'\|2 
2u>//.() 

|£o| W)|2|'-(S, S')\ 

• ftc(n#> |V>(z)|2 + zii>(z[ 
dxl>*(z 

I   

dz 0 
or, after integration over the surface S, 

ßo     , r,  i2u/c   c"\\2 

H(r)|s=t(5,5')^^(0 
(..Wz) 

+ ZM(z))-  (2D 

Ptotal = n 
2w//.o 

\EQ\2\t(S, S')|J 

(22) 

(23) 

Thus, the quantity \t(S. S')|2, where /. is defined by (18), 
represents a power (or intensity) transfer function for a given 
primitive block [Fig. 1(a)] 

T(S. s') =,", ^';"al = i'(^ s')\2 
iv • P: 

(24) 
»tat 

The total transfer amplitude for the entire optical system 
[see Fig. 2(b)] is represented by a convolution of multiple 
transfer amplitudes of primitive blocks, with summation over 
all intermediate principal surfaces 

'■(■Joiit i i'in) 

=   Y,   /('s'"" •5») • • • '-^2'5i ws>'Si»)-(25) 

S^Si.-.S,, 

The meaning of the sum is specified below (Section VI). The 
corresponding transfer function for the entire optical system 
is defined as 

T(S0uti ^iii) — IH-Joul; Si„)| (26) 

At this point, it is convenient to introduce a normalized 
transverse eigenfunction of the TE diffracted field, according 
to (19) 

<p{l) = -2t/3b / dl'e - e'G(p, p')<pS'(l')-        0-1) 
■IS' 

It is easy to see that if the surfaces S and 5" are smooth 
and have low curvatures, which is the case of real integrated 
optical circuits, the normalization condition for the function 
ip{l) can be written as 

[ dl\<p{l)\2 = J dl'\<ps-{l')\' 1. (28) 

The concept of a normalized transverse eigenfunction of the 
diffracted field is very useful because: 1) the function (p(l) 
is defined uniquely by (27) and (28) everywhere; 2) it can 
be easily generalized to the case of several primitive blocks 
(Section VI); and 3) the transfer amplitude (19) can be 
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represented as a complex overlap integral of two normalized 
eigenfunctions tp(l) and ips(l) on the principal surface S, i.e., 

t(S:S') = J dl<p*s(l)<p(l). (29) 

These two eigenfunctions describe the incoming and outgoing 
fields on the principal surface S. 

In calculating the properties of optical devices, it is easy 
to see that the eigenfunctions ips(l) and <p(l) should closely 
match each other on every principal, or output surface S, 
in order to maximize the efficiency [see (24) or (26)] of a 
particular device design. In other words, each pair of these 
two functions (for a given S) has to be commensurable. For 
example, both can be chosen as transverse Bloch functions of 
the same order, as discussed in Section VI. 

To complete our consideration of transfer amplitudes, the 
corresponding basic equations for the TM-mode transfer am- 
plitude l.(S, S'), the transverse eigenfunction y>(l), and the 
transfer function T(S. S'), are presented as 

7(.S\ 5') = 2ißu j d.i. j d.i.' e • eVs(0GV. p')Jps.(l' 

= j' di^*(i.)W) 

W) l)=2ift0 I d.i.' ee'G(p, p')ips,(l') 

n • Ptotiii 

n' • P: 
T(S, s') = ., .j;™ = \i.(s, s')f 

"   '      total 

(30) 

(31) 

(32) 

All the quantities in (30)-(32) are marked with a bar. Because 
of symmetry between the two sets of equations (19), (24), 
(27), and (29) for the TE modes and (30)-(32) for the TM 
modes, one can expect, for small birefringence, that the 
transverse eigenfunctions and transfer amplitudes for the two 
polarizations will be numerically very close (see Section IV). 

The expressions for transfer amplitudes, transverse eigen- 
functions, and the block and total transfer functions obtained 
in this section represent a direct consequence of vector elec- 
trodynamics, i.e., they depend on the light-polarization vectors 
and geometry of the optical system. 

IV. TRANSVERSE EIGENFUNCTIONS FOR SINGLE 

AND MULTIPLE WAVEGUIDE STRUCTURES 

The transverse coordinate dependence of the optical field on 
any principal surface S, described above by an eigenfunction 
ips{l), is generally not known. This function is a solution of 
a second order differential equation and it can be, in prin- 
ciple, calculated exactly. It can also be modeled for specific 
waveguide designs by assuming a cosine, or more complex, 
periodic refractive index or aperture profiles [14]. Any reliable 
eigenmode solver can be used with our proposed method 
of transfer amplitudes. We describe below an approach for 
calculating transverse eigenmodes that is similar to the well- 
known effective index method in respect to basic equations, 
but it uses a different numerical technique and produces some 
new results. 

The first part of this section describes a simple numerical 
method for calculating the transverse eigenfunction <ps(0- I* 

is assumed that the vertical quantization is performed first 
and that the index profile in the transverse direction is an 
arbitrary function of the transverse coordinate (/). We are 
thus able to use vertical eigenfunctions to obtain y>s(0- The 
propagation constant ßo is interpreted as a bare propagation 
constant corresponding only to vertical quantization in a slab 
region. In case of an arbitrary index profile in the trans- 
verse direction, the electromagnetic field dependence on the 
longitudinal coordinate (x) is determined by a new effective 
propagation constant ß, to be determined below. 

For a waveguide system of arbitrary geometry in the x-l 
plane (the local Cartesian coordinates are x, I, z) with strong 
confinement in the z direction, a general TE eigenmode is a 
solution of the Helmholtz equation (V2 + £gn2(r))E(r) = 0, 
and, far enough from cutoff, it can be described as 

E(r) = e£0e
£/?X/)V'(z) 

i!ix ft * flo        (33) 

where ß and ßo are the effective-and bare propagation con- 
stants, respectively (ßo enters as an implicit parameter in 
V'(z) and <p{!); ßo > ft)< e is a unit vector, and lia is the 
initial amplitude. The coordinate / reduces to the Cartesian 
coordinate y when the principal surface S is a planar surface 
perpendicular to the .-;: direction. In the waveguide plane, the 
refractive index is a function of the transverse coordinate ii.,r(l) 
with the maximum value n\. 

The difference between ßa and ß can be determined as 
follows. We look for a transverse eigenfunction ip{l) describing 
the waveguide region between the principal surfaces, so that 
the surface index (5 or S') is inappropriate here. After 
separating the longitudinal coordinate, the product of rj> and 
ip in (33) should satisfy 

W? + ipi + ^o"'2^- *) - 02))(V(OV'(2)) = 0     (34) 

where ;;.(/, z) is the refractive index profile in the transverse 
and vertical directions, equal to »ir(') inside the layer. In 
addition, </> must satisfy the condition of vertical quantization 

d- - + ^r(z)-ßf)U(z)=ü (35) 

where n{z) is the "bare" refractive index profile in the 
transverse and vertical directions, equal to n.\ inside the layer. 
After combining (34) and (35), the basic Schrodinger-like 
equation for the eigenfunction tp(l) is obtained 

+ A[e-V{l)\)v{l)=() (36) 

where the dimensionless eigenvalue s and the "potential en- 
ergy" of a photon V(l), which are limited to 0 < s, V(l) < 1, 
are defined as follows: 

£ = 
ßl-ß2 

, *o2("i - <•(<)) = AV{1). (37) 

In case of a buried waveguide(s), when the transverse index 
profile ntT{l) lies in between v.\ and Tt2, the parameter A = 
^o(ni — n!)- If e *s known, then the unknown ß = neffk0 = 
\/ßo - Ae is a function of ß0, A, d, a, and the parameters in 
V(l)', neff is the effective refractive index. In this approach, 
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Fig. 3. Intensities of the TE and TM eigenmodes of a single waveguide with 
a rectangular index profile, and two normalized Bloch functions in the periodic 
waveguide profile, calculated for the values of the transverse quasi-momentum 
q = 0 and jr/rf. 

the condition of vertical quantization is included explicitly 
through (35). 

The numerical technique based on (35) and (36) is ap- 
plicable with good accuracy to any index profile in the 
transverse direction, including profiles with abrupt boundaries 
in both directions and a smooth profile only in the transverse 
direction. The procedure of vertical quantization within the 
present approach is exactly the same as in the effective index 
method. Some examples of simultaneous evaluation of the 
eigenfunction tp{l) and the eigenvalue e are given below. 

In the case of a symmetric slab waveguide, we start with 
the known transcendental equation for ß() expressed through 
a dimensionless variable X 

tan(X) = X = ±y/(k07i1)*-(%    (38) 
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Fig. 4. The even and odd TE eigenmodes of a symmetric double waveguide 
structure with strong coupling. 

the consequence of tunneling through the central barrier. The 
tunneling is important in the analysis of optical devices such 
as 3-dB couplers [1]. 

To demonstrate the capability of our numerical method, 
we use (36) to evaluate the transverse eigenfunction of a 
periodic waveguide structure with the index profile given by 
V(l) = cos2(7r//r/), where d is the period. In this case, the 
function ip(l) is represented by a periodic Bloch function 
which can be expressed through standard Mathieu functions 
(see [20, ch. 20]) 

I' -ul   Ad?\ qd 
v,(/)-,^(Z) = ce7|7..^-J,        r=H- (39) 

where q is the quasi-momentum in the transverse direction 
and v is the dimensionless index of the Mathieu function. 
The corresponding eigenvalue in (36) and the value of the 
propagation constant are determined as 

' Ad2\      1 
where U = {hk0/2)>/?/.* - n\ is a characteristic parameter. 
This equation determines fia as a function of A, n\, n2, 
the layer thickness, and a quantum number of the verti- 
cal quantization ;/ = 0. 1. 2, •••. In the case of a single 
waveguide, we use (36) and (37) with the known ß0 to 
determine eigenvalues of the effective propagation constant 
ß and the corresponding eigenfunctions ip(l). The examples 
of the resulting eigenfunctions <p{l) for a single waveguide 
within a periodic structure with the refractive index difference 
An = 0.0085 and birefringence 0.0125 are plotted in Fig. 3. 
A rectangular index profile is assumed. Both the TE and TM 
modes are shown. The Bloch functions, also shown in Fig. 3, 
will be discussed below. There is a strong similarity between 
different eigenfunctions in Fig. 3, especially in the core wave- 
guide region. For example, the TE and TM eigenmodes almost 
coincide. Our numerical calculations have also shown that for 
any refractive index profile and almost everywhere in I the 
transverse eigenfunction is very close to a Gaussian (see also 

[11])- 
The even and odd TE eigenmodes of a symmetric double 

waveguide structure in the case of a strong coupling are 
plotted in Fig. 4. The presence of two eigenfunctions with 
different parities, and having slightly different eigenvalues, is 

AiP 
a,. + 

ß - ft, = \Jftl - Ae„ (40) 

where ar(Q) is the characteristic value of the Mathieu equa- 
tion ce';(z, Q) + (or - 2Q cost») cer{z, Q) = 0. For the 
first Brillouin zone, we have 0 < |o| < n/d (0 < |r| < 1). 

The normalizable part uq(l) of the Bloch function, which 
according to Floquet's theorem is defined by the equation 
<pq(l) = eiqluq(l), represents an element of the orthonormal set 
of functions j\i\<d/2 dluq(l)uq.(I) = V- ™s normalizable 
part is plotted in Fig. 3 for two values of q (0 and ir/d). 
Within the waveguide, all solutions are very close to each 
other. For q = n/d, the Bloch function behaves differently. 
The periodic Bloch eigenmodes obtained above cannot be, in 
general, excited. However, they can be excited with specific 
envelope functions and specific values of the quasi-momentum 
q (see Section V). 

V. FOURIER OPTICS APPROXIMATION AND STAR COUPLERS 

In this section, we consider propagation of eigenmodes and 
transverse eigenfunctions based on the idea of the transfer 
amplitude defined in (29). The general formulation discussed 
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in Section III is applied here to efficiency calculations of: 1) 
Dragone's star coupler and 2) waveguide grating router (see 
Section VI). 

It is well known that diffraction of guided waves in a star 
coupler with circular (cylindrical) principal surfaces, periodic 
input, and output waveguide structures, and the ratio if/ßCl 
(where d is the distance between waveguides in the transverse 
direction and R is the characteristic radius of principal surfaces 
bounding a slab region) can be described with high accuracy 
within the Fourier optics approximation [14], [21), [22]. Cal- 
culations of transverse eigenfunction <p(l) of the diffracted 
field and the transfer amplitude t.(S, S') for a star coupler 
in the Fourier optics approximation are considered below for 
different types of input and output apertures. Numerical results 
for the transfer function are presented as a function of the 
total number of waveguides and the characteristic aperture 
size. However, it is interesting to point out that the general 
method described here is applicable to non-Fourier optics 
situations as well. 

The explicit form of the 2-D Green's function, defined by 
(7), for a slab region of a star coupler [see Fig. 2(a)] is given 
by the Hankel function of the first kind and zeroth-order (the 
quantization index in the propagation constant is omitted here 
for simplicity) 

a[p,P') = -iCuk\p-p'\) 

2\2irß()\p-p'\ 

1/2 
jMp-P'\ (41) 

where //,, (x) = ./(>(.'•) + /Tn(:r), and the approximation cor- 
responds to the asymptotic expansion of the Hankel function 
at H()\p — p'\ 3> 1 [2()|. The distance between points /' and 
/". with the angular coordinates a and M' on the arcs S and 
S'. respectively, is determined as \p - p'\ = //((cos n + 
cos iy' - I)'-' + (sin fv - sin <Y')-)

]/
-', where the characteristic 

values of the input and output aperture angles |M|. |n'| <C 1 
[Fig. 2(a)]. Thus, in the standard diffraction approximation 
[191, we substitute \p - p'\ — R in the denominator and 
\p - p'\ — R(1 - mv') in the exponent of (41). This gives 
rise to the propagation function 

«("■«') = 5 Ur Tfalt 

1/2 
..i\V„/?(l-f»»') (42) 

where we explicitly use the angular variables o and a' instead 
of a pair of 2-D radius vectors p and p'. It is also convenient 
to normalize the eigenfunctions by the angle <y instead of the 
arc length I = aR. [see (28)] 

j dl\^>(l)\2 = J dn\<K«)\2 = 1. <p{l) = -~ 0(O). 

(43) 
For a TE-polarized eigenmode, the product of the initial and 
final polarization vectors reduces to unity for |o|, |o'| <S 1 
[see (19) and (27)]: e • e' = cos a cos a' - sin a sin <v' « 1. 
The basic equations (27) and (29) can be reformulated as 

t(S,S')=  [ da<Ps(a)4>(a) (44) 
Js 

</•>(<*) = 
■iftoli- 

1/2 

>U"n  I   da' 
.IS' 2TT 

■(riß°nan'<l>s-(<y') (45) 

where the integral in (45) is a typical Fourier optics integral. 
For diffraction problems under consideration, numerical cal- 
culations show that the difference between the results obtained 
with the approximate propagation function (42) and the exact 

expression (si/4)//(,   [l\s\p - p'\) is negligible. 
The oscillating nature of the diffracted field on the output 

surface S is important. If the input into the slab region of 
the coupler is introduced through a single waveguide with the 
ordinal number in on S', the transverse eigenfunction (45) of 
the diffracted field on S can be represented in general by the 
Bloch function of the order in (in — 0, ±1. ±2. • • •): 

<!>,,,((*) = <'■-'"'*"'" <M"). (46) 

The exponent in (46) can be written-in the real coordinate form 
as ini.fi()d(y = />//, where / = <\R and // = iir^ud/R is the 
transverse Bloch momentum. Similar Bloch-mode excitations 
have been discussed by Dragone in the case of merging or 
tapering multiwaveguide structures 116]. The angular period of 

Bloch oscillations equals 27r/(|/;/|//U'0 and is much smaller, 
for |m| > 1, than the characteristic spread of the diffracted 
field described by the function <!>»{<*). This spread, also called 

the diffraction angle «V.UH-, is of the order !/r/(/V/), as 
determined below. On the other hand, this period is much 
greater than the natural angular period of the waveguiding 
system djR. Consequently, we obtain the following sequence 

of inequalities (|;;/.| >   I): 

d 2 T: 

".litr ,, , ~      ,-,■     H7) 
l»/l.»ll'' -'ll'' 

Diffracted waves generated by a side-waveguide input in a 
circular star-coupler geometry can be approximated by Bloch 
modes described by periodic boundary conditions. In this case, 
we have [see (39) and (40) and discussion of the Bloch 
functions in Section IV): q = 2niu/.X,d = ni.^d./R = 

(ir/d.)r, N, = 2-nR/iyP ^ I», '' = mj^dn,,/- = 2m./.\, ~ 
0.2m, and |?»| < 5 for the first Brillouin zone. The periodic 

boundary is applied at a distance N,d. 
It should be emphasized that in the overlap integral in /. 

[see (44)], Bloch oscillations in </>(n) cannot be compensated 
by a choice of the appropriate value of d/R because in is 
a variable (■;//. = 0. ± I. ±2. • • •). For the central waveguide 
input, the Bloch factor equals I (m = 0). The field produced 
on the output surface 5 by each side-waveguide input (in £ 0) 
is harmonic [see (46)]. This field enters the output waveguide 
structure and propagates through it, conserving the specific 
phase relationship (for the transverse Bloch functions) between 
different waveguides (see Section VI). Consequently, to pro- 
vide the highest overlap of the transfer amplitude [see (44)], 
the eigenfunction at the output </>s(«). determined on 5, should 
contain a Bloch function factor (e-''»"V<>) as well, with the 

same value of rn as in <j>(a) [see (45) and (46)]. 
For a single-waveguide input with a transverse rectangular 

aperture 2a, the nonperiodic part <f>0 of the eigenfunction is 
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given by (45) as 
1/2 

eißRsmc(ßaa) (48) 

where sinc(:r) = sin(a;)/a:. There are two special cases of 
a = d/2, which corresponds to the case of waveguides 
merging at S', and a = d,/4, which corresponds to a periodic 
step-index waveguide structure on S'. 

For a single waveguide input with a periodic cos2(wRa/d) 
aperture profile, the nonperiodic part 4>Q of the eigenfunction 
is given by 

1/2 ™-m eiftR 1 

m sine 

1 - 
m 

0.8 - 

0.0 

-i 1 ■ 1 ■ r 

■a = oV2, merging 
• a = d/4, merging 

—cosine 
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25 

Fig. 6. Efficiency T(S, S') of a star coupler plotted as a function of the 
number N of output waveguides in the case of a single-waveguide input. We 
show two cases of a waveguide system merging on 5 with a = d/2 and 
a = d/4 [(48), solid and dashed lines, respectively], and a case of a periodic 
cos2(*Ra/d) aperture profile on 5 [(49), dashed-dotted line]. 

(49) 
The first zero of this function occurs at a = «,*;// = 4ir/ßod. 
The resulting angular distributions of </->o(oO along with the 
distribution generated by a Gaussian input eigenmode are 
depicted in Fig. 5. 

When the eigenfunctions <j>a{n) and </>s(«) are known, 
the integral in (44) can be easily evaluated. The calculated 
transfer functions T = \t\2 are presented in Fig. 6 for different 
values of N. Transfer functions are sensitive to the size, the 
total number, and the periodicity of the input and output 
waveguides. This allows for easy optimization of the device. 
The calculated values for the star coupler's efficiency are 
realistic and relatively high, reaching a maximum of ~80%. 
This efficiency is obtained with the condition of zero aperture 
outside the waveguide, as used previously by Dragone [14]. 

VI. SIMULATION OF A WAVEGUIDE GRATING ROUTER 

Having calculated the diffracted field distribution in a star 
coupler, we now turn to a more complicated optical system 
of two star couplers connected by a multiwaveguide struc- 
ture, a version of Dragone's router [15], [23] (Fig. 7). The 
discussion of a waveguide grating router consists of three 
parts. We first discuss a connection between the convolution of 
transfer amplitudes and Bloch modes. A zero waveguide-width 
approximation is then used to obtain relationships between 

Fig. 7. An optical system consisting of two star couplers connected by the 
multiwaveguide structure, known as the Dragone's router. 

various waveguide parameters of the router. In the third part, 
we calculate the optical response function of the router and 
present results of numerical simulations. 

In the router illustrated in Fig. 7, there are four principal 
surfaces: the input surface 5in with the angular variable a', 
the two intermediate surfaces Si and S[ (variables «i and a[, 
respectively), and the output surface 5out with the variable 
a. For this system of surfaces, the direct application of (25) 
results in the following specific form: 

t(So„t, Sin) = £  *(Sout, S[)t(S[, SMSu Sin)    (50) 

where t{Su S-m) and t(Sout, Si) are the transfer amplitudes 
for the two star couplers, i.e., the two slab regions; and 
t(S[, Si) is the transfer amplitude for the waveguide grating. 
However, as written, this is only a formal relation and the 
meaning of summations over principal surfaces is not defined. 

It is convenient to use equations similar to (27) and (29) 
[or (44) and (45) for the angular variables] to express the total 
transfer amplitude t(SouU S\n) in terms of diffracted fields in 
Dragone's router. From the purely geometrical consideration, 
one can establish that the transmission through the multi- 
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waveguide grating, from Si to S[ [represented formally by 
/.(SJ, Si) in (50)], can be described by a specific transfer 
amplitude, called here W(a\, «i), which is related to the 
grating geometry and the detailed shape of the waveguide 
openings at the two surfaces. When both star couplers are 
of the same shape and size, the transfer amplitude W is 
proportional to the delta function of its arguments, and we 

get the following symmetric form: 

W(«i, «i) = «;(«,)«(*>'i -"i) <5') 

where the single-parameter phase factor ir(<\ i) describes phase 
shifts between adjacent waveguides arising from their relative 

displacements and different optical paths between Si and S[. 
Since the radiation and absorption losses are assumed to be 
negligible, the absolute value of the phase factor is taken as 
1. For the two star couplers of different sizes, a scaling factor 

should be introduced in (51). 
The Dirac-delta function in (51) is very important since it 

can be easily expanded into complex Fourier series |24| 

*K -«I)=AI'W(/V(«'I -'h)) 
= fad    A    (_ 

•l-K ^ 

,./!'.    -< (52) 

where it is easy to recognize the Bloch exponentials similar to 
that defined in (46). The product fa <l is simply a normalization 
factor. As a result, the waveguide transfer amplitude can be 
decomposed in terms of a complete orthogonal set of basic 

Bloch modes. 
Consequently, if we interpret the summation in (50) as 

integration over the angular coordinates on each principal 

surface, that equation can be reformulated as 

/(S,„„. Sin)=   Y,    '■».(■s'.."-)/.»('S'i») (53) 

or, after introducing the integral kernel A', 

(f>{a) =   /    dn'K(a, a')4>Siu(n') (56) 
•/Si,, 

K(a,a')=(-2iß0R)2 f   daiG(a, m)w{al)G[n1. «')• 
Js, 

(57) 

The remaining double integral in (56) and (57) is quite 
simple in the Fourier optics approximation. Let's consider 
a zero-width approximation in which the grating produces 
a periodic signal on the output surface S,„„. The charac- 
teristic function to in (55) can be represented by a sum of 
discrete contributions from each waveguide in the grating; 
each contribution is included with a phase factor describing 

the corresponding optical path 

which means that the Bloch function with a specific number •;;/ 
propagates through the waveguide «rating without distortion. 

Partial transfer amplitudes, for each Bloch index in, are 
determined by substituting the formal summation over St or 
S[ with integration over cv L or «',. This representation, with 
partial transfer amplitudes for each index m, (53), contains 
only double diffraction in the two star couplers. The Bloch- 
mode transmission through the grating is only implied. While 
in this shortened description there is no explicit summation 
over surfaces S, and S[, this picture is still equivalent to the 

initial (50). 
Once the summation procedure over principal surfaces is 

specified, (50) can be reduced to the integral form (44). Using 
(51), the general formulas describing double diffraction in two 

star couplers can be represented as 

/(S,,,,,., S:,,) =  /     A«<As.„»0(«) <54> 
■Is  

<fr{a)=-2iß0R [  da[G(a,a\)       dai«.'(<vi) 
■Is] h, 

x S{n\ - «,) (-2iß{)R) /   da' G(au a') 
■I s,„ 

•&*„(«') (55) 

w(cti) = a,i ]P v.""iS}i((Y\ - .so,/) (58) 

where A is the length difference between adjacent waveguides 
connecting Si and S\, the product of (iA is the corre- 
sponding optical path difference between waveguides, and 
.s- = 0. ±1. ±2, •••. The factor n,; was chosen here for 
convenience. By using (42) for G'(o. o') and performing the 
integration over infinite limits, we get an analytical expression 

K{n, n) = -ifaRi •>m„n (X'i ,x<l  Y^ r/-s(riA-;t,./(-.+.i +1« )) 

2TT 
(59) 

The complex Fourier series can be expressed in terms of a 
periodic delta function using the well-known formula related 

to Floquet's theorem 

52    r.-''"« = 2n   Y,   'M£ + 2*/') (60) 

Equation where £ is a variable and .s, /> = 0. ± 1. ±'2. 
(59) is then represented as 

*(„„■) =-.,«« £ s(„+,.-|^ + g). 
/>= — DO V 

(61) 

The grating thus generates a periodic delta function in the 
transfer amplitude. The argument of the delta function means 
that the output field in (56) is a set of shifted and inverted 
images of the input field. In practice, the integration is per- 
formed over a finite region and a smooth bell-shaped function 
substitutes for each delta function in (61). 

Equations (56) and (61) have important applications to 
wavelength multiplexing and demultiplexing in integrated op- 
tical circuits. Suppose the input to the router consists of 
four closely spaced and equidistant wavelengths in a single 
waveguide, with four corresponding values of propagation 
constants ß and ß0. This set of wavelengths can be represented 

by 

(62) 

(63) 

A„ =A0(1 + ne) 

ft„ =0(1-ne), ßo„ =ßa(l-ne) 

where n - 0, 1,2, 3, and A0, ß, and ß0 are the initial values 
for the (de)multiplexing problem. These expressions for ß and 
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ßo are valid for e < 1. To resolve two adjacent wavelengths, 
the following condition on the last term in the argument of the 
delta function in (61) must be satisfied: 

2-KJH)      2TTJ)O 2-KVtt ^   

l\).„+id     (h„d       Pod 
£ = rtrf (64) 

where ;>o is the order of the diffraction maximum. This 
condition includes contributions from propagation constants 
of different wavelengths. Higher order maxima are present, 
with the same intensity, due to the periodicity of the delta 
function in (61). Thus, if the parameter p0 is chosen in such 
a way as to make (64) equal to the angular period atl of the 
waveguide structure, then the «' in the delta function in (61) 
takes the following values: 

a = —a iuy.,1 + 
n,i (65) 

where n = 0. 1. 2. 3. The light of any wavelength can be thus 
directed to any output waveguide, depending only on the input 
waveguide used and the parameter A. The phase shift a,i/e 
in the argument of (65) can be partly or entirely compensated 
for by choosing the value of the characteristic path difference 
A. For example, complete compensation is achieved for 

A = — — d. 
/I    c 

(66) 

The light of wavelength A0 entering the central input wave- 
guide is thus directed to the central output waveguide. The 
same light entering the waveguide m is directed to the output 
waveguide -/;/.. The light of wavelength Ai is displaced by 
one angular period of the grating, etc. 

The different wavelength contributions are totally separated 
(demultiplexed) in space (angular) variable and 

O(n) y^ ^,,'A.s-,,, (-'>: - na,i (67) 

the efficiency of a router: the efficiency calculated in this way 
is always underestimated. However, (64) and (66) represent a 
general relationship between waveguide parameters and are in 
fact approximation-independent. 

To simulate a real router with a finite waveguide width, 
we use the idea of universality of diffracted eigenmodes in 
star couplers. For identical star couplers, the nonperiodic parts 
of diffracted eigenmodes, (/)()(n), generated by single opening 
apertures are exactly the same, see (46). This has two direct 
consequences. First, the diffracted wave in the first star coupler 
gives rise to the interception factor fK in the optical response 
function of a router. The factor /„. is defined for each input 
wavelength and each waveguide in the grating as 

/ ;=     / |0o(«)|2'^ 
\./Ml ,,—»1(1 

(68) 

where a„ = a/H and « = 0. ±1, ±2, • • •. The factor fs is 
a smooth function of s because the angular width of each 
waveguide r>,/ is much smaller than the diffraction angle <*,nir 
in (47). The interception factor is a measure of the efficiency 
of a single star coupler 

where <•.,, is the amplitude coefficient of a contribution with 
A„ in the input signal. We conclude that the input signal 
is totally demultiplexed on the output surface of Dragone's 
router, i.e., each wavelength enters its own output waveguide. 
When the phase shift in (65) is not completely compensated 
for, an additional phase shift should be entered into (67). This 
might be useful when it is desirable to send any wavelength 
to any particular output waveguide. 

It is easy to estimate the angular dimension of the grating 
by using real values for the initial wavelengths and the 
channel separation: for instance, A() = 1.552 52 //in and 
AA = 0.0032 //m. respectively. In this case, e = AA/A() = 
2.06 x H)-3. This corresponds to the diffraction maximum 
of the order /,„ = A) d.n,,/2irc = 10G in (67). By making 
the optical path differences A equal to tpdi, where di is the 
spatial period of waveguides in the grating, and compensating 
for the phase difference of (66), we obtain <p = ndd/edi. For 
<7, = 100 //m. ten times larger than the waveguide period d at 
the principal surface, we calculate ip = 27.75°. 

Equations (64) and (66) were obtained in the zero-width 
approximation. This approximation cannot be used to calculate 

(69) 

(see also the last paragraph of Section V). By varying the 
waveguide width (2«) and the total number of the output 
waveguides (Ar) of the star coupler, the efficiency can be 
optimized (see Fig. 6). 

Second, according to (46), the nonperiodic diffracted ampli- 
tudes </>„(<■ i) produced by each input opening in the second star 
coupler are also identical. Thus the router response function 
itself is proportional to </>()(a). Collecting these ideas together, 
we can construct the following expression for the normalized 
amplitude response function of a router with a finite waveguide 
width: 

O('t) = Oii(n) £'. ..,.s(,iJi- ..*„,/(,. +1,1.1.,)) (70) 

where the summation over .s is carried out for all waveguides in 
the grating and in is the ordinal number of the input waveguide 
of the router. According to (64) and (66), the combination f1A 
in the exponent equals 2np0 where the order of the diffraction 
maximum ]>o is integer. 

An example of wavelength demultiplexing based on (70) 
is shown in Fig. 8 which plots the diffracted intensities for 
four wavelengths as a function of the output angle. Numerical 
results for wavelength multiplexing produced in the central 
channel by the two adjacent waveguide inputs with two 
different wavelengths are illustrated in Fig. 9 for the total 
number of waveguides in the grating TV .:= 29 and 2a = 6 //.m. 

A simple estimate can be given to show the kind of effi- 
ciencies expected from this description of a router. Assuming 
a rectangular shape of the input eigenmode (fis-,,, («')> we make 
use of the sine-function representation [see (48)] and approxi- 
mate the interception factor by using the mean-value theorem 
for the integral |see (68)] /„ ~ y/nd\^)n(.iaa)\. A rough 
estimate of (70) can be obtained by changing the summation 
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Fig. 8. The output intensity of a router as a function of the angular 
coordinate; wavelength demultiplexing produced by a multiwavelength input 
at the central waveguide. 
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Fig. 9. An example of wavelength multiplexing: inputs into two adjacent 
waveguides result in the output at the central waveguide. The output intensity 
(on a decibel scale) is plotted as a function of wavelength. The input 
wavelengths are An into the central waveguide and A» + AA into the first 
adjacent side waveguide. 

to integration over ,s and using the Fourier transform of a sine 
function (ff^ e^sinoO-i;) da = TT 6(1 -/r), where 0(.r) is 
the step function). The result can be represented as 

<p{a) ~ <M«) 
Aira 

Ihd2 

1/2 

^Si„(-«-maj).        (71) 

In this approximation, the output signal is also rectangular 
with the width equal to 2a. Because of the strong inequality 
fv,j -C «.uff. the peak height is proportional to <l>0(—m(\>,i), 
i.e., it slowly decreases with |m|. The maximum intercept is 
provided in the case of waveguides merging on the output 
surface of the first star coupler [a = d/2, see (69)]. Using the 
normalization condition for the eigenmode <£sin, the estimated 
integrated peak intensity of the output signal (71) is given by 

/ 
\4>{a)\2da —-\<j)o(-mad)\2. 

Pod 
(72) 

According to (48), |0o(O)|2 is proportional to a. In the case 
of a central input and output (ra = 0), we get the following 
numerical values of the router efficiency: 60% for a = 3 fim 
and 80% for a = 4 /xmi, both for d = 10 jtm. 

In reality, the shape of the input eigenmode <j)S]u {a') and the 
router amplitude response function </>(a) are not rectangular 
and there are no analytical expressions for <f>(a). Numerical 
calculations show, however, that we can still use an expression 
for the response function similar to that given by (71). In 
general, the effect of demultiplexing is described by 

3 

<f>(a) ~ 4>0{-mad)Q ^ cnt/>(W(-a - (m + n)ad)    (73) 
n=0 

with the obvious features of (67) and (71). Here Q is the 
numerical factor which reduces to the square-root factor in 
(71) in the rectangular approximation, and <j>dd{a) is the 
exact double-diffracted transverse eigenmode on the output 
surface of the router. The router efficiency can be obtained by 
integration of \4>dd\2 over the angular aperture of a given output 
waveguide. In this way, we can get the following numerical 
values of the router efficiency: 54% for a = 3 //.m and 72% for 
« = 4 /im which are in reasonable agreement with the results 
of the rectangular approximation (2a here is the waveguide 
width). 

The resolving capability of the device depends on the total 
number of waveguides in the grating section. On the other 
hand, the total efficiency is determined by the waveguide 
width. Fig. 10(a) and (b) shows two examples of optimization 
of a waveguide grating router, one for 'la = 6 //m and the 
efficiency 54% and another for 2« = 8 /tm and the efficiency 
72%, as a function of N. The principal maxima in both 
figures change only slightly while the first sidelobes decrease 
dramatically with increasing N. In the case of Ar = 29 
and 2« = 8 //.m [Fig. 10(b)l, the difference between the 
principal maximum and the first sidelobe exceeding 30 dB 
is demonstrated in this simulation. 

VII. SUMMARY 

We present a method of modeling and simulating inte- 
grated optical circuits. It is based on the vector-electrodynamic 
formulation of field distributions and transfer amplitudes in 
optical waveguides, and it is equivalent to Huygens' picture of 
propagation and diffraction of time-harmonic electromagnetic 
fields. Thus, it has a clear physical background. The method 
consists of the following steps: 

1) dividing a waveguide system into a set of primitive 
blocks separated by principal optical surfaces, and de- 
termining boundary values of electromagnetic fields and 
their polarization; 

2) expressing the diffracted fields through surface inte- 
grals, generated according to Love's field equivalence 
principle, by the equivalent surface current densities; 

3) computing the transfer amplitude for each block sepa- 
rately, and accounting accurately for effects of diffrac- 
tion; 

4) calculating the transfer amplitude of the entire optical 
system as a convolution integral of transfer amplitudes 
of its primitive blocks; 

5) evaluating the total transfer amplitude, as a function of 
physical characteristics of a device, such as the size and 
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Fig. I0.    Resolving capability of a grating router for the total number of 
waveguides  .V   =   19. 23. 20  in the  grating:  (a) 'la   =   G   pm and (b) 
J.i   —  S /i m. 

shape of apertures on principal surfaces or the number 
of waveguides in the grating. 

Fast efficiency optimization of each primitive block, and 
the entire optical system, is made possible in this method by 
combining analytical and numerical calculations. It is shown 
that the concept of a normalized transverse eigenfunction of 
the diffracted field is very useful in calculations of transfer 
amplitudes. The crucial role of transverse Bloch modes in 
propagation through multiwaveguide structures is emphasized. 
The accuracy of this method is demonstrated by calculat- 
ing two examples in detail. First, the transverse eigenvalues 
and eigenfunctions of an arbitrary waveguide structure are 
described by the basic Schrödinger-like equation, combined 
with the standard vertical quantization procedure. The general 
approach is also illustrated with the transfer amplitude and 
efficiency calculations for a Dragone's star coupler and router. 
The method is applicable to a variety of materials and systems. 

In conclusion, the method of representing complex optical 
systems developed in this paper provides a quantitative de- 
scription of the propagation of eigenmodes and is a powerful 
tool for numerical calculations of diffracted field distributions, 
efficiencies, etc.. needed for complete characterization of such 
systems. 
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We report on low-frequency noise characteristics of visible-blind GaN p-n junction photodetectors. 
Carrier hopping through defect states in the space charge region, believed to be associated with 
dislocations, is identified as the main mechanism responsible for the dark conductivity of the 
photodiodes. Under reverse bias, the dark current noise has the 1// character and obeys the Hooge 
relation with a~3. Under forward bias, we observe generation-recombination noise related to a trap 
level with the activation energy of 0.49 eV. Under illumination, detectivity is found to be shot noise 
limited. The noise equivalent power of a 200X200/tm2 photodetector is estimated at 6.6 
X10"l5 W/Hz1/2 at a bias of - 3 V. © 1998 American Institute of Physics. 
[S0021-8979(98)05504-2] 
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I. INTRODUCTION 

Ultraviolet-sensitive photodetectors with a sharp cutoff 
for the visible spectral range have a number of applications 
in spectroscopy, flame sensing, etc. Due to the large direct 
band gap, gallium nitride is ideally suitable for the prepara- 
tion of such photodetectors. Significant progress has already 
been achieved in the development of Schottky barrier GaN- 
based detectors,1,2 resulting in responsivities as high as 0.18 
AAV and a bandwidth in excess of 10 MHz. However, the 
performance of Schottky diodes is typically limited by rela- 
tively large leakage currents. The reverse bias leakage cur- 
rent in a p-n junction diode is expected to be significantly 
lower than in a Schottky barrier diode due to the larger bar- 
rier height This promises a corresponding performance 
advantage.3,4 Indeed, p-n junction based GaN photodiodes 
with dark currents as low as a few pA have been demon- 
strated recently.5 

Characterization of low-frequency noise is needed to as- 
certain performance of photodetectors. Noise measurements 
provide a valuable diagnostic tool for the evaluation of elec- 
tronic and optoelectronic devices and their long term 
performance.6 In the case of photodetectors, the detectivity is 
limited by the level of internal noise, usually expressed as 
the noise equivalent power (NEP). In this work, we use low- 
frequency noise measurements of GaN-based p-n junction 
detectors to analyze mechanisms of dark conductivity and 
device performance. 

II. SAMPLE PREPARATION 

Devices investigated here are grown on sapphire sub- 
strates by metalorganic chemical vapor deposition 
(MOCVD). The details of device design and fabrication pro- 
cedures are given elsewhere.5 The photodiode structure con- 
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b)Current address: Department of Electrical and Computer Engineering, Uni- 

versity of South Carolina, Columbia, SC 29208. 

sists of a thin A1N buffer layer, followed by a 0.8 fim thick 
n-type layer of GaN (doped n—1018 cm-3) and a 2.2 yum 
thick p-type layer of GaN doped with Mg. The p-doping 
level varies along the growth direction from ~ 1016 cm" at 
the p-n junction interface to «7X 1017 cm-3 at the contact 
surface. This results in a.p-ir-n structure, where ^stands for 
a lightly doped compensated p-type layer sandwiched be- 
tween more heavily doped p and n layers. The doping levels 
are determined from capacitance-voltage (C-V) and Hall 
measurements. Reactive ion etching is used to define rectan- 
gular mesas of individual diodes prior to Ohmic contacts 
deposition. 

The photodiodes responsivity reaches 0.14 AAV at 363 
nm, and it drops by more than three orders of magnitude 
above the cutoff wavelength. From -2 to -20 V the pho- 
tocurrent is almost independent of the reverse bias. The pho- 
todiode bandwidth of «32 MHz is determined from the mea- 
sured detector response to ~ 1 ns long laser pulse. 

III. DARK CURRENT MEASUREMENTS 

Reverse bias current-voltage (/-V) characteristics of 
GaN photodiodes are measured in the temperature range 
from 290 to 570 K. Figure 1 presents five of the curves, 
taken on a 200X200 /im2 device. All of the curves show an 
exponential increase in the dark current with bias voltage. 
An increase in the dark current with the device temperature, 
for a given value of the reverse bias, is also approximately 
exponential. 

The exponential dependence of the dark current on both 
the voltage and temperature is difficult to explain by conven- 
tional models for reverse-bias conductivity.7 Measurements 
of devices with different sizes show that the current scales 
with the device area, rather than the perimeter of the active 
region, thus ruling out any significant contribution of leakage 
currents at the device mesa sidewalls. Due to the large band 
gap of GaN and extremely small thermal excitation rate, dif- 
fusion   currents   in   the   neutral  region   and  generation- 
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FIG. 1. Reverse bias branch of the current-voltage characteristics for a 
200X200/im2 photodiode at five different temperatures. Fitting results are 
shown by dashed lines for the low-bias data and by dotted lines for the 
high-bias data. 

recombination (g-r) currents in the depletion region should 
be negligibly small. Even though the room temperature dark 
current for low reverse bias is less than 1 pA, that is still 106 

times higher than the saturation current of ~2X 10"l8 A ex- 
pected from the thermal excitation of carriers. The onset of 
impact ionization in the photodiodes under test is observed 
only at a bias of approximately -42 V, and therefore it is 
not expected to contribute significantly to the measured low 
voltage /- V characteristics. Finally, direct band-to-band or 
trap assisted tunneling currents have exponential voltage de- 
pendence, but should be only weakly temperature dependent 

The conductivity of GaN diodes can be modeled by as- 
suming that the current is due to hopping of charged carriers 
via localized defect-related states (traps) in the depletion re- 
gion. Hopping was studied extensively in amorphous semi- 
conductors, where it was found to be the dominant mecha- 
nism of current flow, especially at low temperatures.8 Hill9 

and Pollak and Riess10 concluded, using different arguments, 
that for moderate electric fields, the current-field dependence 
is described by: 

y=y(0)exp 
eFa IT0 

2kT\ T 

1/4 

(1) 

where j is the current density, j(Q) is the low-field current 
density, T0 is a characteristic temperature parameter, T is the 
temperature, it is the Boltzmann constant, F is the electric 
field, e is the electron charge, C is a constant of the order of 
unity, and a is the localization radius of the electron wave 
function. At very low fields hopping conductivity cr(F) 
=j{F)IF is expected to follow Mott's law for variable-range 
hopping:" 

1/41 

<T(0)<X exp (2) 

where T0 is the same parameter as in Eq. (1). The validity of 
Eq. (2) was experimentally demonstrated for many amor- 
phous solids.12,13 

We use Eq. (1) to fit the experimental 1-V data for 
reverse bias ranging from — 1 to —6 V. We assume that, for 
this bias range, the total current through the p-n junction is 
equal to the saturation current originating in the depletion 
region and its density is given by Eq. (1). The depletion 
region width w was extracted from the measured 
capacitance-voltage (C-V) characteristics. The average 
electric field dependence on the reverse bias V was then 
found from F=(V+ V,)/w, where V, is the built-in junction 
voltage (estimated at ~ 1 V). Using this relation, we convert 
the measured current-voltage data into a current-field depen- 
dence, at each temperature, which can be fit directly with 

Eq. (1). 
The best fit to the experimental data for all temperatures 

is shown in Fig. 1 by dashed lines. At each temperature, two 
fitting parameters are used: zero-field current density j(0), 
and r=Ca(T0/T)m, which has a physical meaning of the 
characteristic jump length. The temperature dependence of 
y(0), fitted with Eq. (2), is used to extract the parameter T0 

of 1.16X10,0K. This value of T0 is approximately three 
orders of magnitude higher than the JT0««10

7
 usually ob- 

served in amorphous semiconductors such as germanium, 
silicon, or heavily implanted GaAs.14 The high value of T0 

explains the strong temperature dependence of the reverse- 
bias current in our photodiodes. Assuming a localization ra- 
dius of a -10 A,,s for a known T0, we obtain C=0.4 from 
the temperature dependence of the parameter r, a median 
value between C=0.8 obtained by Hill9 and C=0.17 ob- 
tained by Pollak and Riess.10 Finally, the density of states, 
per unit energy, taking part in hopping conduction is esti- 
mated from Af~18/(Moa3),16 as - 1.8X 1016 cm-3 eV_1. 

It is surprising to find in a crystalline semiconductor the 
type of conductivity previously observed in amorphous sol- 
ids or at very low temperatures. We believe that the reason 
for this is high dislocation density in epitaxial GaN. For a 
typical dislocation density of 108 cm-2, there are on average 
40 000 dislocations in a 200X 200 /im2 device. The dangling 
bonds at dislocation boundaries are likely candidates for the 
equivalent of localized states taking part in hopping 
conduction.17 

Equation (1) is expected to be valid only for fields F 
<€(2kT/ea)°°*5Xltf V/cm, at room temperature. It is evi- 
dent from Fig. 1 that the slope of measured l-V character- 
istics changes noticeably for reverse bias voltages higher 
than ~7 V, which corresponds to the electric field of —2.2 
X105 V/cm We believe that at higher bias the diode con- 
ductivity behavior can be explained by a combination of 
hopping and Poole-Frenkel effect, or field-assisted thermal 
ionization of carriers from traps in the depletion region. 
Similar behavior was previously observed in amorphous 
germanium.8 For sufficiently high electric fields, a single hop 
can take a charge carrier into the conduction band, instead of 
taking it to the neighboring localized state. Poole-Frenkel 
conduction was observed in thin films of various wide band- 
gap materials, including A1N and diamond.18,19 It was shown 
previously that the field dependence of the current density is 

given by:20 
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FIG. 2. Measured dark current noise spectra and the corresponding fits at 
five different temperatures. 

J-J.4*£\. M^P      (3) 

where jo is the low-field current density, ßw is the Poole- 
Frenkel constant, c0 is the vacuum permittivity, and e is the 
high-frequency dielectric constant of die material. For 
GaN, taking e(°o)=5.35, we calculate ySpF=3.3 
X10~* eV V~m cmin. 

The curves, calculated according to Eq. (3), shown by 
dotted lines in Fig. 1, demonstrate an excellent agreement 
with the experimental high bias data. At all temperatures, the 
best fit is obtained for y3PF=4.5XlO~4eV V_,/2cm,/2. It is 
interesting to note that for high bias, Eq. (1) predicts currents 
much higher than those observed experimentally. This can be 
explained assuming that the width of the energy band for 
localized states near the Fermi level is limited to a certain 
value of A£. The enhancement of hopping conduction with 
electric field will then saturate when the energy acquired by 
a charge carrier moving against the field eFR, where R is 
the length of the jump, becomes comparable to A£. At room 
temperature,   for   F=2.2X10S V/cm,   we   estimate   A£ 
«0.1 eV. This width is typical of dislocation-related energy 
bands.17     Consequendy,      we     obtain     N'=NAE"*2 
X 101S cm-3 for the spatial density of hopping conduction 
centers. Another conclusion is that even at high bias, hop- 
ping is responsible for a significant part of the diode current, 
which can explain the experimentally estimated ySPF being 
~ 1.4 times its theoretical value. 

IV. NOISE MEASUREMENTS: REVERSE BIAS 

The noise characteristics of GaN photodiodes are mea- 
sured in the frequency range of 1 Hz-100 kHz using a low 
noise current preamplifier and a fast Fourier transform (FFT) 
spectrum analyzer. The bias is varied from -5 to -30 V, 
and the sample temperature from 298 to 523 K. The equip- 
ment is calibrated by measuring the room temperature noise 
current of a conventional 600 ft resistor. The noise floor of 
the setup, determined by the noise parameters of the preamp- 
lifier, is ~ 10"25 A2/Hz. The experimental results for -10 V 
bias, and different temperatures, are presented in Fig. 2. At 
elevated temperatures or high values of the reverse bias, 
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FIG. 3. Bias and temperature dependence of the proportionality coefficient 
relating the dark current and noise power. 

where the dark current of the photodiode increases above 
~ 1 nA, the appearance of 1// noise is observed. All of the 
measured noise spectra satisfy the usual relationship: 

Sn=s0 

/2 

r (4) 

where S„ is the spectral density of the noise current, Id is the 
total current, / is the frequency, and s0 and y are fitting 
parameters. The value of y is found to vary from 1.0 to 1.1. 
The values of sQ are plotted in Fig. 3 as a function of bias 
and temperature. The parameter s0 decreases slightly with 
increasing bias and rapidly with increasing temperature. 

Two models of the 1// noise in hopping conductivity 
have been proposed, both of which are related to the pres- 
ence of localized states, separated from each other by dis- 
tances longer than the typical electron jump length. Such 
sites are not incorporated into the so-called critical current- 
carrying network, but function as "dead ends," slowly ex- 
changing electrons with sites within the network. In the num- 
ber fluctuation theory,21 this leads to slow fluctuations in the 
total number of electrons taking part in hopping conduction. 
The "mobility" fluctuation theory22 assumes that an electron 
trapped at a "dead end" changes the distribution of charge 
in the surrounding material and shifts the energy levels of 
neighboring traps. This leads to slow fluctuations in the ef- 
fective "mobility" of hopping electrons. 

The "mobility" fluctuation theory predicts a very weak 
temperature dependence of the low-frequency hopping noise 
and it does not appear applicable in our case. The number 
fluctuation theory results in the frequency dependence of the 
noise spectral density given by a well-known Hooge 
formula:23 

S„=ar—, 
fN 

(5) 

where N is the average number of electrons taking part in the 
conduction process and the predicted value of the Hooge 
parameter a is of the order of unity. We can roughly estimate 
the value of a for our photodiodes from the following con- 
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FIG. 5. Arrhenius plot for the trap center lifetime obtained from the mea- 
sured noise spectra. 

sideration. From Eqs. (4) and (5) we have ce=SoN. At room 
temperature and —10 V reverse bias, the measured value of 
the parameter sQ is ~1.3X10"S. At the same temperature 
and bias the dark current of the photodiode is ~ 1 nA, or, 
equivalently, the sample resistance is J?~lX10l0ft. The 
number of electrons N can be found from R=L2/(e/iN), 
where the length L is taken to be equal to the depletion layer 
width w, obtained from C-V measurements. The effective 
mobility fi is estimated from the theory of hopping 
conduction9 using parameters obtained from the fit to the 
I-V data at room temperature. We obtain fi~5 
X10"6 cm2 V"1 s~\ JV~2.3X 10s, and finally, a~3, con- 
sistent with the predictions of the number fluctuation theory. 
Both the bias and temperature dependence of the parameter 
s0 can be explained by the change in the number of hopping 
electrons N. With increasing bias, N goes up due to increas- 
ing width of the depletion layer, and with temperature, due to 
decreasing length of a typical jump. 

V. NOISE MEASUREMENTS: FORWARD BIAS 

Under a forward bias, the built-in electric field de- 
creases, and hopping is no longer a dominant conductivity 
mechanism. The photodiode current is dominated by diffu- 
sion currents in the neutral region. As a consequence, we do 
not observe the l/f current noise. Instead, most devices show 
a very clear g-r noise component with a Lorentzian spec- 
trum of the form: 

*.(«)-A 1+(Uro)». (6) 

where A is a constant and r0 is the characteristic time of the 
generation-recombination process. For the accurate determi- 
nation of r0 from experimental data, it is convenient to mul- 
tiply the measured noise density S„ll\ by to-lirf and plot 
it on a linear scale as a function of frequency /. The 
Lorentzian then appears as a symmetric peak at/0, and r0 is 
found from r0=l/2irfo- 

In Fig. 4, we plot the frequency dependence of the nor- 
malized noise density at three different temperatures, mea- 

sured on a 200X200 /tm2 device at a forward bias of +2 V. 
It is clear from Fig. 4 that/0 is increasing and, therefore, T0 

is decreasing with temperature. For a thermally activated g-r 
process the characteristic time r0 is expected to follow an 
Arrhenius equation: 

T0=7ooexp \wf (7) 

where Too »s a constant and e is the activation energy. The 
value of e can be estimated from the slope of logi^f1) plot- 
ted against the inverse temperature.25 The Arrhenius plot for 
our device is presented in Fig. 5. We obtain e~0.49 eV, in 
agreement with the expected activation energy for centers 
associated with Ga antisite defects in GaN.26 

VI. NOISE MEASUREMENTS UNDER ILLUMINATION 

We have also performed noise measurements on GaN 
photodiodes illuminated with a Xe arc lamp. The photodiode 
bias was kept at —5 V, and the light intensity was adjusted 
by changing the lamp current. Unfortunately, at low frequen- 
cies the measured noise was dominated by the noise of the 
lamp itself, so we do not have experimental evidence for the 
presence or absence of the l/f noise in the photocurrenL 
Above —10 kHz, the measured noise spectrum was com- 
pletely flat The corresponding noise current density is plot- 
ted in Fig. 6 as a function of photocurrent /,,. Figure 6 shows 
that the experimental points lie very close to the line of 
■Jlelp, expected from the shot noise theory.27 We conclude 
that, at least at these frequencies, no other significant noise 
sources are present in photoconduction. 

VII. DEVICE PERFORMANCE 

At room temperature and for reverse bias values lower 
than 10 V, the dark current noise spectra disappear below the 
noise floor of our measurement setup. However, the device 
performance can be estimated by extrapolating noise data 
taken at higher biases. The dark current at -3 V is 2.7 pA, 
resulting in 5n (at 1 Hz) =7.3X 10~29 A2/Hz. At this bias 
the magnitude of the  l/f noise for frequencies above 
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~85Hz will be lower than that of the shot noise, 
5diot~8.6XlO_31 A2/Hz. The corresponding NEP (/ 
s* 100 Hz) is 6.6X10"'5 W/Hz,/2, comparable to the best 
data reported for ultraviolet-enhanced silicon photodiodes. 

Our analysis shows that leakage current and noise pa- 
rameters of GaN photodetectors are, at present, limited by 
the quality of epitaxial material. Reducing the density of dis- 
locations and point defects would eliminate hopping, and 
significantly reduce the dark current and noise intensity. In 
addition, since hopping conduction is greatly enhanced by 
the electric field, we expect that the device performance will 
be improved by fabricating p-i-n diodes with a wider intrin- 
sic region. 

VIII. CONCLUSION 

We have studied the origins of dark conductivity and 
low-frequency noise in the dark current of GaN p-n junction 
photodetectors. Hopping via defect-related states in the 
depletion region, thought to be related to dislocations, is 
found to be the dominant current mechanism. The density of 
localized states in the forbidden gap is estimated at 2 
X 1015 cm-3. Different noise sources are identified in the 
dark current under forward and reverse bias, and under illu- 
mination. Under reverse bias, the dark current noise is of the 
\lf character and obeys the Hooge relation with a«* 3. Under 
forward bias, generation-recombination noise related to the 
trap level with the activation energy of 0.49 eV is observed. 

Under illumination, the photocurrent noise is found to be 
dominated by the shot noise. The noise equivalent power of 
a 200X200/tm2 device at -3 V bias is estimated at 6.6 
X10_,5W/Hzl/2. 

ACKNOWLEDGMENTS 

The authors are grateful to V. Mashkov and G. B. 
Wright for very valuable discussions. Work at Texas Tech is 
supported by DARPA, BMDO, and the Jack F Maddox 
Foundation. 

'Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. 
Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl. Phys. Lett. 70, 
2277 (1997). 

2F. Binet, J. Y. Duboz, N. Laurent, E. Rosencher, O. Briot, and R. L. 
Aulombard, J. Appl. Phys. 81, 6449 (1997). 

3Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, Electron. Leu. 31, 1781 
(1995). 

4J. M. Van Hove, R. Hickman. J. J. Klaassen, P. P. Chow, and P. P. Ruden, 
Appl. Phys. Lett. 70, 2282 (1997). 

5 A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. 
Kuksenkov, and H. Temkin, Appl. j»hys. Lett. 71, 2334 (1997). 

6L. K. J. Vandamme, IEEE Trans. Electron Devices 41, 2176 (1994). 
7M. Razeghi and A. Rogalski. J. Appl. Phys. 79, 7433 (1996). 
*M. Morgan and P. A. Walley, Philos. Mag. 23, 661 (1971). 
»R. M. Hill, Philos. Mag. 24, 1307 (1971). 

I0M. Pollak and I. Riess, J. Phys. C 9, 2339 (1976). 
"N. F. Mott, Philos. Mag. 19, 835 (1969). 
,2N. Aspley, E. A. Davis, A. P. Troup, and A. D. Ioffe, J. Phys. C 11.4983 

(1978). 
13 A. J. Mackintosh, R. T. Phillips, and A. D. Ioffe. Physica B & C 117-118, 

1001 (1983). 
14 K. Kuriyama, K. Kazama, T. Koyama, T. Takamori. and T. Kamijoh, 

Solid State Commun. 103, 145 (1997). 
15M. L. Knotek. M. Pollak, T. M. Donovan, and H. Kurtzmann, Phys. Rev. 

Lett. 30, 854 (1973). 
I6C. H. Seager and G. E. Pike, Phys. Rev. B 10, 1435 (1974). 
17 N. T. Bagraev, A. I. Gusarov, and V. A. Mashkov, Sov. Phys. JETP 68, 

816 (1989). 
18 A. H. Khan, J. M. Meese, T. Stacy, E. M. Charlson, E. J. Charlson, G. 

Zhao, G. Popovici. and M. A. Prelas, Diamond, SiC, and Nitride Wide 
Band Gap Semiconductors, Symposium Proceedings, San Francisco, CA, 
1994, pp. 637-642. 

"P. Gonon, Y. Boiko, S. Prawer, and D. Jamieson, J. Appl. Phys. 79, 3778 
(1996). 

^J. G. Simmons, J. Phys. D 4, 613 (1971). 
21B. I. Shklovskii, Solid State Commun. 33, 273 (1980). 
22 V. I. Kozub, Solid State Commun. 97, 843 (1996). 
^F. N. Hooge, Phys. Lett. 29A, 139 (1969). 
24 B. K. Jones, IEEE Trans. Electron Devices 41, 2188 (1994). 
"J. A. Copeland, IEEE Trans. Electron Devices ED-18. 50 (1971). 
*T. L. Tansley and R. J. Egan, Phys. Rev. B 45, 10 (1993). 
"A. van der Ziel, Noüe in Solid State Devices and Circuits (Wiley, New 

York, 1986). 


